News | Computed Tomography (CT) | December 30, 2015

The Transformation of Cancer Imaging: From Shades of Gray to Living Color

spectral CT

Tyler Curtis, a graduate student, captures images from the spectral CT Graduate student Tyler Curtis captures images from the spectral CT.

Taken by Wilhelm Roentgen in 1895, the first X-ray produced was of his wife’s hand. Roentgen received the first Nobel Prize in physics for his work, but his discovery of X-ray beams also changed the medical profession far more than that simple black-and-white image might have suggested. The beams he used, higher in frequency than ultraviolet light but lower in frequency than gamma rays, revolutionized the medical profession, allowing physicians to see inside a patient’s body to more readily diagnose disease and injury.

In short, Roentgen laid the foundation for diagnostic radiology. Within six months of his discovery, surgeons on the battlefield were using X-rays to locate bullets in wounded soldiers. Since that time they have continued to be used — for non-invasive imaging in biomedicine, non-destructive testing of materials, security screening and more. As the technology has advanced, so has the clarity and accuracy of the X-rays.

Today radiographic images, such as X-rays, mammograms and computed tomography (CT), help detect diseases like cancer in its early stages when treatment can be most effective. However, it has all been in black and white. Even accounting for the remarkable advances in radiography and 3-D imaging since Roentgen, the difference between healthy tissue and abnormalities can be difficult to detect when an image is in shades of gray. Unfortunately, it can still be the difference between life and death.

A new technology called spectral (color) computed tomography, or spectral CT, is not only on the horizon, but it is also on the University of Notre Dame’s campus, where researchers are giving the phrase “in living color” a new meaning.

According to project leaders Ryan K. Roeder, associate professor of aerospace and mechanical engineering, and Tracy C. Vargo-Gogola, senior lecturer in biochemistry and molecular biology with Indiana University School of Medicine at South Bend and the Harper Cancer Research Institute, the spectral CT they are using — part of a collaboration between Notre Dame and MARS Bioimaging Ltd. — is the first commercially available preclinical system in the United States. Housed in the Notre Dame Integrated Imaging Facility (NDIIF), the MBI preclinical spectral CT scanner can detect up to eight X-ray energy channels simultaneously, allowing color assignment to specific molecular signatures for improved identification of abnormalities, such as tumors.

“The technology promises a transformation for biomedical imaging in general and cancer imaging in particular,” said Bradley Smith, the Emil T. Hofman Professor of Chemistry and Biochemistry and director of the NDIIF.

While the scanner uses advanced X-ray detector technology made possible by the Medipix3 detector chip developed at the CERN, it is aided by nanoparticle contrast agents that Roeder’s lab has created to “target” molecular signatures associated with cancer and other diseases. Individual contrast agents and tissue types can be identified and assigned a specific color, resulting in a more complete picture than ever realized.

Roeder, Vargo-Gogola and their team are presently investigating spectral CT contrast agents for molecular imaging with support from the National Science Foundation. Their research is also being incorporated into a variety of educational programs for students engaging in STEM disciplines through NDnano and the Harper Cancer Research Institute.

In addition, the researchers are forming a close collaboration with the Kelly Cares Foundation and the Saint Joseph Health System to develop more accurate breast cancer detection methods using molecular imaging for women with dense breast tissue using various molecular imaging approaches, including spectral CT. While these efforts focus on breast cancer, work with this new molecular X-ray scanner is promising for the detection and treatment of many types of cancers, including ovarian, colorectal, lung and metastatic disease.

“Spectral computed tomography (CT) scanning is really the next great enhancement of clinical CT quality,” David P. Hofstra, administrative director of the Diagnostic Imaging and Therapy Division at Saint Joseph Health System in Mishawaka, said. “It takes us beyond comparing the number of ‘slices’ to a discussion about fundamentally better and more clinically valuable imaging.

“Already, spectral CT scanning is playing important roles in clinical practice by reducing metal artifacts and also by reducing the amount of radiation that is administered to patients.

“In the very near future, spectral CT promises to allow clinicians better means to characterize the material makeup of visualized items (like kidney stones, plaques, uric acid crystals, etc.). Also in the near future, iodinated contrast that is administered may be able to be reduced.

“Someday, spectral CT technology may allow altogether different types of contrast materials other than iodine, which we use currently. Different or targeted contrast agents may show important clinical findings that we can only begin to imagine currently.”

For more information: http://news.nd.edu/

Related Content

MRI and Computer Modeling Reveals How Wrist Bones Move

Using fast MRI, UC Davis researchers scanned left and right wrists of men and women and used the data to build computer models of the movement of wrist bones. The data could help understand wrist injuries such as carpal tunnel syndrome. Image courtesy of Brent Foster and Abhijit Chaudhari, UC Davis.

News | Magnetic Resonance Imaging (MRI) | February 19, 2019
In a just-published Journal of Biomechanics article, the researchers proved a longtime assumption about individuals'...
Synopsys Releases Simpleware ScanIP Medical Software for 3-D Printing
Technology | Medical 3-D Printing | February 14, 2019
Smart technology company Synopsys recently announced the release of the Synopsys Simpleware ScanIP Medical edition for...
Medivis Launches SurgicalAR Augmented Reality Platform
Technology | Advanced Visualization | February 14, 2019
Medical imaging and visualization company Medivis officially unveiled SurgicalAR, its augmented reality (AR) technology...
Standards-based interoperability is the key to the use of components critically important to Vital Images’ vision of enterprise imaging

Standards-based interoperability is the key to the use of components critically important to Vital Images’ vision of enterprise imaging. Graphic courtesy of Vital Images

Feature | Artificial Intelligence | February 11, 2019 | By Greg Freiherr
Vital Images has reconciled its vision of the distant future with near term reality.
Fujifilm Launches Latest Synapse 3D Version at HIMSS 2019

The new Intravoxel Incoherent Motion (IVIM) MR application in Synapse 3D

Technology | Advanced Visualization | February 08, 2019
Fujifilm Medical Systems U.S.A. will debut the latest version of its Synapse 3D solution at the Healthcare Information...
Sponsored Content | Videos | Information Technology | February 07, 2019
In this video Johann Fernando, Ph.D., Chief Operating Officer of...
Sponsored Content | Videos | Artificial Intelligence | February 01, 2019
Artificial intelligence can do more than assist in the interpretation of patient images.
FDA Clears Perspectum's MRCP+ Digital Biliary Tree Viewer
Technology | Magnetic Resonance Imaging (MRI) | January 24, 2019
Perspectum Diagnostics received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its MRCP+...
Sponsored Content | Whitepapers | Advanced Visualization | January 21, 2019
The cost of unnecessary repeat imaging can be significant, both on the patient and organization.
NewYork-Presbyterian Hospital Partners With Philips for Health IT and Clinical Informatics
News | Enterprise Imaging | January 16, 2019
Philips announced that NewYork-Presbyterian Hospital has chosen to implement the company’s IntelliSpace Enterprise...