News | Computed Tomography (CT) | December 30, 2015

The Transformation of Cancer Imaging: From Shades of Gray to Living Color

spectral CT

Tyler Curtis, a graduate student, captures images from the spectral CT Graduate student Tyler Curtis captures images from the spectral CT.

Taken by Wilhelm Roentgen in 1895, the first X-ray produced was of his wife’s hand. Roentgen received the first Nobel Prize in physics for his work, but his discovery of X-ray beams also changed the medical profession far more than that simple black-and-white image might have suggested. The beams he used, higher in frequency than ultraviolet light but lower in frequency than gamma rays, revolutionized the medical profession, allowing physicians to see inside a patient’s body to more readily diagnose disease and injury.

In short, Roentgen laid the foundation for diagnostic radiology. Within six months of his discovery, surgeons on the battlefield were using X-rays to locate bullets in wounded soldiers. Since that time they have continued to be used — for non-invasive imaging in biomedicine, non-destructive testing of materials, security screening and more. As the technology has advanced, so has the clarity and accuracy of the X-rays.

Today radiographic images, such as X-rays, mammograms and computed tomography (CT), help detect diseases like cancer in its early stages when treatment can be most effective. However, it has all been in black and white. Even accounting for the remarkable advances in radiography and 3-D imaging since Roentgen, the difference between healthy tissue and abnormalities can be difficult to detect when an image is in shades of gray. Unfortunately, it can still be the difference between life and death.

A new technology called spectral (color) computed tomography, or spectral CT, is not only on the horizon, but it is also on the University of Notre Dame’s campus, where researchers are giving the phrase “in living color” a new meaning.

According to project leaders Ryan K. Roeder, associate professor of aerospace and mechanical engineering, and Tracy C. Vargo-Gogola, senior lecturer in biochemistry and molecular biology with Indiana University School of Medicine at South Bend and the Harper Cancer Research Institute, the spectral CT they are using — part of a collaboration between Notre Dame and MARS Bioimaging Ltd. — is the first commercially available preclinical system in the United States. Housed in the Notre Dame Integrated Imaging Facility (NDIIF), the MBI preclinical spectral CT scanner can detect up to eight X-ray energy channels simultaneously, allowing color assignment to specific molecular signatures for improved identification of abnormalities, such as tumors.

“The technology promises a transformation for biomedical imaging in general and cancer imaging in particular,” said Bradley Smith, the Emil T. Hofman Professor of Chemistry and Biochemistry and director of the NDIIF.

While the scanner uses advanced X-ray detector technology made possible by the Medipix3 detector chip developed at the CERN, it is aided by nanoparticle contrast agents that Roeder’s lab has created to “target” molecular signatures associated with cancer and other diseases. Individual contrast agents and tissue types can be identified and assigned a specific color, resulting in a more complete picture than ever realized.

Roeder, Vargo-Gogola and their team are presently investigating spectral CT contrast agents for molecular imaging with support from the National Science Foundation. Their research is also being incorporated into a variety of educational programs for students engaging in STEM disciplines through NDnano and the Harper Cancer Research Institute.

In addition, the researchers are forming a close collaboration with the Kelly Cares Foundation and the Saint Joseph Health System to develop more accurate breast cancer detection methods using molecular imaging for women with dense breast tissue using various molecular imaging approaches, including spectral CT. While these efforts focus on breast cancer, work with this new molecular X-ray scanner is promising for the detection and treatment of many types of cancers, including ovarian, colorectal, lung and metastatic disease.

“Spectral computed tomography (CT) scanning is really the next great enhancement of clinical CT quality,” David P. Hofstra, administrative director of the Diagnostic Imaging and Therapy Division at Saint Joseph Health System in Mishawaka, said. “It takes us beyond comparing the number of ‘slices’ to a discussion about fundamentally better and more clinically valuable imaging.

“Already, spectral CT scanning is playing important roles in clinical practice by reducing metal artifacts and also by reducing the amount of radiation that is administered to patients.

“In the very near future, spectral CT promises to allow clinicians better means to characterize the material makeup of visualized items (like kidney stones, plaques, uric acid crystals, etc.). Also in the near future, iodinated contrast that is administered may be able to be reduced.

“Someday, spectral CT technology may allow altogether different types of contrast materials other than iodine, which we use currently. Different or targeted contrast agents may show important clinical findings that we can only begin to imagine currently.”

For more information: http://news.nd.edu/

Related Content

Dee Dee Wang, M.D., runs Henry Ford Hospital's 3-D printing lab that supports its complex structural heart program.

Dee Dee Wang, M.D., runs Henry Ford Hospital's 3-D printing lab that supports its complex structural heart program.

Feature | 3-D Printing | November 17, 2017
Three-dimensional (3-D) printed anatomic models created from a patient’s computed tomography (CT), magnetic resonance
Sponsored Content | Videos | 3-D Printing | November 17, 2017
Dee Dee Wang, M.D., Director, Structural Heart Imaging at Henry Ford Hospital, Detroit, explains how her center uses
German Hospital Plans Life-Saving Vascular Surgeries With 3-D Printing

Transparent Stratasys 3-D-printed model of a patient-specific aortic arch, used by the University Hospital Mainz to practice complex endovascular surgeries. Photo courtesy of Business Wire.

News | 3-D Printing | November 16, 2017
Stratasys Ltd. announced that surgeons at the University of Mainz Cardiothoracic and Vascular Surgery Department in...
Arterys Completes Series B to Accelerate Product Commercialization
News | Advanced Visualization | November 15, 2017
Arterys Inc. announced the close of its $30M Series B financing round. The investment was led by Temasek, with...
3D CT image reconstruction of the thoracic organs and the heart using Philips software.
Sponsored Content | Webinar | Advanced Visualization | November 07, 2017
The CME webinar “Innovation and Success in 3D-inspired Development of the Business and Clinical Practice,” will take
EOS Imaging Hosts Symposium During American Association of Hip and Knee Surgeons Annual Meeting
News | Orthopedic Imaging | November 07, 2017
EOS imaging hosted a symposium entitled “How 3-D Weight-Bearing Planning from EOS Images Contributes to Improving THA...
TeraRecon Introduces 175-Plus New Features in iNtuition 4.4.13
Technology | Advanced Visualization | November 06, 2017
TeraRecton announced the launch of version 4.4.13 of its iNtuition advanced visualization platform, over 175 feature...
Using Ziosoft Automated-Preprocessing to Streamline Workflow and Make Efficiency and Improved Patient Outcomes a Top Priority
Sponsored Content | Case Study | Advanced Visualization | November 02, 2017
As a 515-bed full-service healthcare facility, Adventist Health Glendale (AHGL) fully understands the importance of...
Laser Scanner Detects Skin Cancer in Less Than 30 Seconds

Image courtesy of VivoSight

News | Oncology Diagnostics | October 30, 2017
Current skin cancer diagnosis can last a number of weeks and be very upsetting. However, a new imaging system developed...
Portable 3-D Scanner Assesses Patients with Elephantiasis

A portable scanning device produces a 3-D reconstruction of swollen legs caused by lymphatic filariasis, a disease that infects millions globally. Researchers at Washington University School of Medicine in St. Louis and colleagues in Sri Lanka will use the device to collect limb measurements for a clinical research trial examining whether the antibiotic doxycycline can reduce the severity of swelling. Image courtesy of Michael J. Weiler/LymphaTech

News | Orthopedic Imaging | October 26, 2017
Scientists at Washington University School of Medicine in St. Louis, working with collaborators in Sri Lanka, have...
Overlay Init