Technology | Radiation Dose Management | March 07, 2019

Thermo Fisher Scientific Launches New Dosimetry Monitoring Service

Medical facilities and other sites can now simplify their radiation safety program by accessing dosimetry technology and services from single provider

Thermo Fisher Scientific Launches New Dosimetry Monitoring Service

March 7, 2019 — A new dosimetry monitoring service from Thermo Fisher Scientific enables medical and imaging facilities, dental offices, veterinary clinics, nuclear power plants, laboratories and other facilities with radiation safety requirements to streamline management of their safety programs.

Thermo Scientific Dosimetry Services are designed to enable facility operators to monitor and track individual employee accumulated radiation dose with both precision and accuracy. Facilities can now deploy the whole-body Thermo Scientific Harshaw thermoluminescence dosimeter (TLD), which is designed to accurately and reliably measure gamma, beta and neutron doses. Facility operators can use Thermo Scientific Dosimetry Services to deliver dosimeters, read and store cumulative data, and produce recurrent dose reports. Harshaw TLDs are durable and easy to wear in a ring, wristband or headband, and are designed to enable flexible extremity monitoring depending on the user’s need.

Thermo Scientific Dosimetry Services are provided using a National Voluntary Laboratory Accreditation Program (NVLAP) accredited lab.

For more information: www.thermofisher.com

Related Content

“Everybody cares about radiation dose, but the most sensitive to radiation are children, because they’re growing.”  —Richard Towbin, M.D., Chief of Radiology, Phoenix Children’s Hospital

“Everybody cares about radiation dose, but the most sensitive to radiation are children, because they’re growing.”
—Richard Towbin, M.D., Chief of Radiology, Phoenix Children’s Hospital

Sponsored Content | Case Study | Radiation Dose Management | April 09, 2020
Medical imaging plays an increasing role in the accurate diagnosis and treatment of numerous medical conditions.
Rising concerns over radiation overexposure teamed with a growing focus on improving the quality of patient care are two key drivers of today’s radiation dose management market. 

Rising concerns over radiation overexposure teamed with a growing focus on improving the quality of patient care are two key drivers of today’s radiation dose management market. 

Feature | Radiation Dose Management | April 02, 2020 | By Melinda Taschetta-Millane
Rising concerns over...
Iodine-based CT contrast ready for scanning with a Canon Aquilion One 320-slice CT system at Northwestern Medicine Central DuPage Hospital in the Chicago suburbs.
News | Radiology Imaging | January 22, 2020
January 22, 2020 — The risk of administering modern...
Iodine-based CT contrast ready for scanning with a Canon Aquilion One 320-slice CT system at Northwestern Medicine Central DuPage Hospital in the Chicago suburbs.

Iodine-based CT contrast ready for scanning with a Canon Aquilion One 320-slice CT system at Northwestern Medicine Central DuPage Hospital in the Chicago suburbs.

Feature | Radiology Imaging | October 30, 2019 | By Dave Fornell
Iodine-based contrast agents used in c
Wearing personal radiation measurement badges to measure dose exposure is crucial.

Wearing personal radiation measurement badges to measure dose exposure is crucial.

Feature | Radiation Dose Management | September 04, 2019 | By Mukta Acharya
Doctors and technologists are exposed to...
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | September 04, 2019
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...
A 3-D printed tungsten pre-clinical X-ray system collimator. 3D printed, additive manufacturing for medical imaging.

A 3-D printed tungsten pre-clinical X-ray system collimator. The tungsten alloy powder is printed into the form desired and is laser fused so it can be machined and finished. Previously, making collimators from Tungsten was labor intensive because it required working with sheets of the metal to create the collimator matrix. 

Feature | Medical 3-D Printing | September 04, 2019 | By Steve Jeffery
In ...