Feature | Radiation Dose Management | September 20, 2023 | By Melinda Taschetta-Millane
GE Healthcare's DoseWatch Enterprise

GE Healthcare's DoseWatch Enterprise


Early-stage detection is key to the prevention of life-threatening diseases; however, limited access to data hinders the ability of radiology healthcare professionals to identify excess exposure to radiation in patients, which could result in both short- and long-term health effects. Understanding the effects of radiation on patients’ health and implementing effective radiation dose management through the adoption of innovative technologies can improve imaging practices and overall patient safety.

The global radiation dose management market size reached close to $270 million in 2022, and is expected to reach just under $600 million by 2028, exhibiting a CAGR of 14.12% during 2022-2028, according to the “Radiation Dose Management Market by Component, Modality, Application, End User, and Region 2023-2028” report recently released from ResearchAndMarkets.com.

Radiation dose management is used to optimize, regulate or block doses through barriers or computed tomography (CT) reduction technologies. It provides tools for monitoring patient exposure, optimization, quality assurance, dose management and real-time staff dose monitoring.

Dose tracking software allows hospitals and imaging centers to track levels of radiation used by exam type protocol. It can flag technologists who are using higher than required doses, who may benefit from additional As Low As Reasonably Achievable (ALARA) training. Radiation dose tracking systems also can help track the amount of radiation a patient has received over time.

Several trends continue to emerge in radiation dose management for radiologists to improve patient safety and optimize imaging practices. These trends continue to evolve as new advancements in technology and trends in imaging develop and come to the forefront.

Trend 1: Awareness and Education

The guidelines and recommendations for radiation dose are constantly evolving, keeping consistent with the ALARA principle, the guiding principle for radiation safety. ALARA is at the core of radiation dose management, emphasizing the importance of minimizing radiation exposure to patients and healthcare professionals while maintaining image quality. Radiologists are increasingly adopting techniques and technologies to ensure that radiation doses are kept as low as possible while still obtaining the necessary diagnostic information. These guidelines were outlined jointly by numerous medical societies.

Trend 2: Dose Monitoring and Reporting

Implementation of dose monitoring and reporting systems has become more widespread. These systems allow radiologists to track the radiation doses delivered to patients over time and identify areas for improvement. The data collected from these systems help radiologists adjust their practices and ensure compliance with recommended dose guidelines.

In fact, some medical physicists and radiology experts have called for wider use of radiation dose monitoring software, because hospitals and imaging centers need to establish a baseline for its use of dose before they can measure the impact of any dose lowering efforts, changes in protocols, use of newer imaging equipment or use of dose lowering techniques. Some hospitals adopted dose recording software to improve their imaging protocols to improve safety for their patients and staff, however new recording requirements by The Joint Commission and some states helped push many other facilities to adopt the technology.

Trend 3: Image Optimization Techniques

Advancements in technology have led to the development of imaging equipment and software that can optimize image quality while minimizing radiation exposure. Radiologists are increasingly using iterative reconstruction algorithms and other image enhancement techniques to reduce the amount of radiation required to produce diagnostic-quality images.

Trend 4: Protocol Standardization

Standardizing imaging protocols across healthcare facilities and within departments helps ensure consistent and appropriate use of radiation. This approach helps avoid unnecessary variations in radiation doses and ensures that the best practices are followed for specific clinical indications.

Trend 5: Artificial Intelligence Applications

Artificial Intelligence (AI) technologies are being progressively integrated into radiology practices and can play a significant role in radiation dose management. AI algorithms can assist in optimizing imaging protocols, predicting patient-specific radiation doses and improving image reconstruction techniques. For example, AI can use data from low-dose CT scans of the lungs to improve risk prediction for death from lung cancer, cardiovascular disease and other causes, as detailed in a recent study published in Radiology, a journal of the Radiological Society of North America (RSNA).

As medical imaging technology continues to evolve, ongoing research and innovation will drive improvements in radiation dose management, which will undoubtedly lead to new techniques, tools and methodologies for measuring, monitoring and minimizing radiation dose exposure.

View the ITN Radiation Dose Management Comparison Chart here

Related Radiation Dose Tracking Systems:

VIDEO: Radiation Dose Tracking Software for CT Imaging

Measuring Radiation Dose

Disputed EHR Dose Levels Could Keep Patients From Necessary Imaging Exams

Medical Imaging Radiation Exposure in U.S. Dropped Over Past Decade

VIDEO: Radiation From Medical Imaging in U.S. Dropped Over Past Decade

The Basics of Radiation Dose Monitoring in Medical Imaging

VIDEO: Radiation Dose Monitoring in Medical Imaging — Interview with Mahadevappa Mahesh, Ph.D.


Related Content

News | Magnetic Resonance Imaging (MRI)

November 30, 2023 — Royal Philips, a global leader in health technology, today launched three new fit for purpose MR ...

Time November 30, 2023
arrow
News | Pediatric Imaging

November 30, 2023 — Youth baseball players are prone to elbow pain and injuries, including repetitive overuse changes ...

Time November 30, 2023
arrow
News | Magnetic Resonance Imaging (MRI)

November 29, 2023 — Researchers have identified objective evidence of how the neck muscles are involved in primary ...

Time November 29, 2023
arrow
News | Digital Radiography (DR)

November 28, 2023 — Canon Medical Components USA (CMCU) - Digital Radiography (DR), global leaders in advanced flat ...

Time November 28, 2023
arrow
News | Computed Tomography (CT)

November 28, 2023 — Smoking marijuana in combination with cigarettes may lead to increased damage of the lung’s air sacs ...

Time November 28, 2023
arrow
News | RSNA

November 27, 2023 — The executive leadership teams from Canon Inc. and Cleveland Clinic gathered early on day two of the ...

Time November 27, 2023
arrow
News | Radiation Dose Management

November 27, 2023 — Qaelum NV, a leading provider of innovative healthcare solutions, and Philips, a global leader in ...

Time November 27, 2023
arrow
News | Digital Radiography (DR)

November 26, 2023 — Konica Minolta Healthcare Americas, Inc., announced today several new solutions in digital ...

Time November 26, 2023
arrow
News | PET-CT

November 22, 2023 — Siemens Healthineers announces the Food and Drug Administration (FDA) clearance of the Biograph ...

Time November 22, 2023
arrow
News | Computed Tomography (CT)

November 22, 2023 — Lung cancer is one of the world’s silent killers. By the time patients experience symptoms, the ...

Time November 22, 2023
arrow
Subscribe Now