News | Radiopharmaceuticals and Tracers | August 16, 2017

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

New tracer holds promise of monitoring targeted treatment of various cancers

Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

August 16, 2017 — In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the University of Michigan demonstrate the potential of a new positron emission tomography (PET) tracer, Carbon-11 labeled sarcosine (11C-sarcosine), for imaging prostate cancer. The article also sets the stage for its possible use in monitoring other cancers.

The study compared the effectiveness of the new tracer with 11C-choline (already widely used for imaging prostate cancer) in two mouse models and also performed the first PET/CT (computed tomography) scan with 11C-sarcosine of a human with prostate cancer.

According to the Centers for Disease Control and Prevention (CDC), prostate cancer is the second most deadly cancer among men. Sarcosine plays an important role in its aggressiveness and progression. Sarcosine enters cells via proton-coupled amino acid transporters (PAT), which are overexpressed in selected tissues and solid tumors — making it an excellent imaging target.

"Given the link between 11C-sarcosine cell uptake and PAT transport, the study provides first evidence that PAT expression can be elevated in prostate cancer," explained Morand Piert, M.D., professor of radiology, Division of Nuclear Medicine at the University of Michigan.

Study results showed that in preclinical models tumor-to-background ratios obtained from 11C-sarcosine PET were significantly elevated compared to 11C-choline. 11C-sarcosine also produced high-contrast images in a human prostate cancer case. Independent target metabolite analyses revealed significant increases of sarcosine, glycine and choline tissue levels from benign prostate tissue to localized prostate cancer and subsequently metastatic disease. The data suggest that 11C-sarcosine is a viable tracer for prostate cancer imaging, with potential benefits over 11C-choline.

Piert noted that 11C-sarcosine could also be an important tracer for identifying and characterizing other cancers. He explained, "To our knowledge, this is the first radiotracer to interrogate the activity of PATs, which play a role as multi-purpose carriers with distinct roles in different cells. In the brain, these transporters are involved in the neuronal amino acid transport. In the intestinal tract, certain PATs play a role as nutrient and drug transporter."

Piert added, "Furthermore, PAT expression increases with cell proliferation. In cancer, PAT function has been related to the amino acid-sensing engine that drives activation of the mammalian target of rapamycin complex 1 (mTORC1), which is an important target for existing and new anti-cancer drugs."

While further studies are needed for clinical validation, he said, "Based on the known metabolism of sarcosine in cancer, we postulate that elevated 11C-sarcosine uptake is a negative prognostic marker and may potentially be useful to monitor mTORC1-targeted cancer treatments."

For more information: www.jnm.snmjournals.org

Related Content

Axumin PET Agent Added to NCCN Guidelines for Suspected Recurrent Prostate Cancer
News | PET Imaging | February 21, 2018
Blue Earth Diagnostics announced that Axumin (fluciclovine F 18) injection has been added to the National Comprehensive...
Radiography Education Enrollment Shows Marginal Rise in 2017
News | Business | February 15, 2018
Directors of radiography educational programs report the number of enrolled students increased slightly in 2017, while...
A Tc99m SPECT cardiac exam showing myocardial perfusion in the heart.

Technetium-99m is primarily used for the detection of cancer and to assess perfusion defects in the heart caused by heart attacks or other conditions.

Feature | Radiopharmaceuticals and Tracers | February 08, 2018 | Dave Fornell
February 8, 2018 — The U.S.
PSMA PET-CT Clearly Differentiates Prostate Cancer from Benign Tissue

68Ga-PSMA PET/CT images showing multifocal PCA in peripheral zone with GS of 5 1 5 5 10. (A and C) Axial PET images. (B and D) Fused PET/CT images. SUVmax of lesion in B was 84.3 and that of lesion in D was 5.7. IRS was 3, and 80% of cells were stained. Credit: Senior author V Prasad, Charité Universitätsmedizin Berlin, Berlin, Germany.

News | PET-CT | February 05, 2018
February 5, 2018 — Using nuclear medicine...
Brain-scan guided emergency stroke treatment can save more lives
News | Neuro Imaging | January 25, 2018
January 25, 2018 – Advances in brain imagin...
PET Tracer Measures Damage From Multiple Sclerosis in Mouse Models
News | PET Imaging | January 24, 2018
January 24, 2018 — The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallma
Novel PET Tracer Clearly Identifies and Tracks Bacterial Lung Infection

Representative PET/CT images of 18F-FDS and 18F-FDG in inflamed mice. Mice were inoculated with dead K. pneumoniae (10^8 CFU/mL). Imaging was performed for days 1, 2, 3 and 4 using 18F-FDG and 18F-FDS. CT images showed clear inflammation on day 2 and day 3 with corresponding high 18F-FDG uptake on PET. No significant uptake of 18F-FDS was detected for any of those 4 days. Credit: J Li et al., University of Louisville School of Medicine, Louisville, Ky.

News | PET-CT | January 22, 2018
January 22, 2018 — Researchers at the University of Louisville, Kentucky, have demonstrated that a new...
PET Tracer Gauges Effectiveness of Promising Alzheimer's Treatment

Longitudinal PET imaging with 18F-AV45. PET imaging shows the average 18F-AV45 uptake per animal group at 8 and 13 months of age. A significant interaction of genotype treatment was observed in the cortex (p = 0.0248), hippocampus (p = 0.0071) and thalamus (p = 0.0084), indicating reduced [18F]-AV45 uptake in BACE1 inhibited transgenic mice. Credit: MICA, University of Antwerp, Belgium.

News | Radiopharmaceuticals and Tracers | December 28, 2017
In the December featured basic science article in The Journal of Nuclear Medicine, Belgian researchers report on the...
Vital Unveils Newest Vitrea Advanced Visualization Release at RSNA 2017
Technology | Advanced Visualization | December 04, 2017
Vital Images unveiled the newest version of Vitrea Advanced Visualization software, the cornerstone of its imaging...
Overlay Init