News | Oncology Diagnostics | August 24, 2018

European team develops magnetoferritin compound to improve the quality of MRI imaging for oncology diagnostics

Scientists Develop New MRI Tool for Cancer Diagnosis and Therapy

Researchers in the laboratory ‘Biomedical Nanomaterials’ of NUST MISIS. Image courtesy of PR Newsfoto/NUST MISIS.


August 24, 2018 — A European research group has developed a system that allows doctors to both improve the accuracy of diagnosing malignant cells and to provide additional opportunities for cancer treatment. The magnetoferritin compound is the main element of the new system. The research article has been published in Advanced Functional Materials.

The research team consists of scientists from the National University of Science and Technology (NUST) MISIS (Moscow), the Technical University of Munich, Helmholtz Zentrum München, the University of Duisburg-Essen, and the University of Oldenburg.

The lack of accuracy (contrast) in imaging is a common problem of non-invasive diagnosis. Contrast agents, compounds that are introduced into the body before a diagnostic procedure to enhance the response and make affected cells more visible on a tomograph, can be used to solve this problem in magnetic resonance imaging (MRI). Paramagnetic gadolinium particles and superparamagnetic iron particles are among these agents. However, even in small quantities, these substances — alien to the human body — can potentially be dangerous.

"The international research team, including Dr. Ulf Wiedwald, a visiting professor at the NUST MISIS Biomedical Nanomaterials Laboratory, has developed a unique injection diagnosis system based on magnetoferritin. The developed system will significantly improve the quality of MRIs and optical diagnosis," said Alevtina Chernikova, rector of NUST MISIS.

Magnetoferritin is a compound consisting of endogenous human protein (ferritin) and a magnetic nucleus. The development and testing of the compound was conducted following the existing protocol for the synthesis of magnetoferritin, but was improved for the effective capture of tumor cells. The high concentration of magnetoferritin in tumor tissue made it possible to obtain a hypoallergenic contrast agent that is perfectly compatible with the human body.

"An intravenous injection of magnetoferritin has been proposed. Then, spreading with the blood flow, [the magnetoferritin] will be captured by the targeted tumor cells. As has been shown in a large number of studies, these cells actively capture transferrin - the protein responsible for the transport of iron in the blood. The same receptors are capable of capturing the magnetoferritin as well. Once they get into the lysosomes of targeted cells, the magnetoferritin will further enhance the contrast signal," commented Wiedwald.

The system will also allow doctors to conduct therapy on tumor formations. If an MRI shows cancerous cells, they can be targeted by an electromagnetic field or light, which will lead to their heating and subsequent death.

For more information: www.onlinelibrary.wiley.com

Reference

Massner C., Sigmund F., Pettinger S., et al. Genetically Controlled Lysosomal Entrapment of Superparamagnetic Ferritin for Multimodal and Multiscale Imaging and Actuation with Low Tissue Attenuation. Advanced Functional Materials, March 13, 2018. https://doi.org/10.1002/adfm.201706793


Related Content

News | Linear Accelerators

June 5, 2023 — UMC Utrecht researchers in the Netherlands are starting two new projects to treat cancer with image ...

Time June 05, 2023
arrow
News | Radiology Imaging

May 19, 2023 — Asymptomatic adults with a high accumulation of fat in their muscles, known as myosteatosis, are at an ...

Time May 19, 2023
arrow
News | Teleradiology

May 17, 2023 — Online workflow systems for off-site radiologists are one reason for health care delays that cost ...

Time May 17, 2023
arrow
News | Contrast Media

May 16, 2023 — Bracco Imaging, an innovative world leader delivering end-to-end products and solutions through a ...

Time May 16, 2023
arrow
News | Contrast Media

May 15, 2023 — Guerbet, a global leader in medical imaging with more than 30 years of experience in MRI, announced that ...

Time May 15, 2023
arrow
News | Radiation Therapy

May 15, 2023 — GE HealthCare is presenting three new global innovations – Intelligent Radiation Therapy (iRT), Auto ...

Time May 15, 2023
arrow
Feature | Radiographic Fluoroscopy (RF) | By Mohammad Sahebjalal, MD

Invented in 1896 by Enrico Salvioni, the fluoroscope remains a flagship technology of modern medicine. The live video X ...

Time May 04, 2023
arrow
Feature | Contrast Media | By Christine Book

In the past year, the radiology community has been a first-hand, hands-on witness to myriad unexpected challenges and ...

Time May 03, 2023
arrow
Feature | X-Ray | By Samuel Browd, MD, PhD

Modalities used in spine surgery, like computed tomography (CT) scan-based navigation systems and even X-rays, reached a ...

Time May 02, 2023
arrow
Feature | Magnetic Resonance Imaging (MRI) | By Johnson Polakkal Joseph

Magnetic resonance imaging (MRI) is a technology that has been around for more than four decades and is a staple in ...

Time May 01, 2023
arrow
Subscribe Now