News | February 24, 2009

Researchers Work on PET with IMRT for "Dose Painting"

February 24, 2009 - Researchers are testing the use of positron emission tomography (PET) for dose painting, but have found the technique is limited by PET’s spatial resolution, according to researchers from the Catholic University of Louvain, Brussels, Belgium (Radiother. Oncol. doi: 10.1016/j.radonc.2008.11.014).

The theory is to use PET with a radiotherapy plan that takes account of tumor physiology, and to use PET to "paint" the dose to regions of intense activity or radiation resistance. PET is used in combination with intensity-modulated radiotherapy (IMRT) with an appropriate functional imaging modality.

The use of PET for dose painting relies on a perfect correlation between the observed PET signal and the underlying biology of interest. To test this, Nicolas Christian and colleagues imaged 15 tumor-bearing mice with PET following injection of the radiotracer 2-fluoro-2-deoxyglucose (18F-FDG). The mice were also imaged with MRI and then assessed using autoradiography.

The PET and autoradiography images however did not always match, particularly in tumor sub-volumes with high 18F-FDG-activity. This mismatch is significant because a biological image-guided IMRT plan would most likely increase the dose to these sites. The larger the tumor volume and the lower the activity threshold, then the better the match.

"Unfortunately, we do not yet have access to spatial image resolution that is good enough to be able to visualize what is going on at the microscopic level. We may make fairly large mistakes in the dose distribution by relying on what we see on the PET," said Vincent Grégoire, professor in radiation oncology at the Catholic University of Louvain and corresponding author for the paper.

Grégoire noted that if a PET system with a higher resolution were developed, the technique may be viable. The researchers are instead examining whether alternative radioisotope tracers could provide a better way of finding specific sites in the tumor where the dose should be increased, such as clusters of hypoxic cells. The researchers still want to investigate the concept of PET-based dose painting.

Source: Medical Physics Web

For more information: medicalphysicsweb.org

Related Content

Subtle Medical Receives FDA Clearance, CE Mark for SubtlePET
Technology | PET Imaging | December 05, 2018
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtlePET. Subtle...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
Feature | PET Imaging | November 07, 2018 | By Greg Freiherr
Positron emission tomography (PET) is getting ready to venture outside oncology, cardiology and mainstream neurology....
Podcast | PET Imaging | November 07, 2018
PET is getting ready to venture outside oncology, cardiology and mainstream neurology.
Hypofractionated Radiation Provides Same Prostate Cancer Outcomes as Conventional Radiation
News | Intensity Modulated Radiation Therapy (IMRT) | October 31, 2018
An analysis led by researchers at Philadelphia’s Fox Chase Cancer Center found treating localized prostate cancer with...
PET Imaging Offers New Possibilities in Chronic Liver Disease Management

Hepatic 18F-FDG, 18F-FAC, and 18F-DFA accumulation are affected in a mouse model of autoimmune hepatitis. (A) Histochemical and immunohistochemical analyses of liver sections from vehicle- and ConA-treated mice. Scale bars represent 50 microns. Transverse PET/CT images (B) and quantification (C) of vehicle- and ConA-treated mice injected with 18F-FDG, 18F-FAC, and 18FDFA. Livers are outlined in a white dotted line. Quantification represents radiotracer accumulation in the liver normalized to a background organ. Image courtesy of Salas J.R., Chen B.Y., Wong A., et al.

News | PET Imaging | October 24, 2018
While liver biopsies are powerful and reliable, they are also invasive, painful, limited and subject to complications....
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...