News | Radiomics | March 21, 2019

Researchers Use Radiomics to Predict Who Will Benefit from Chemotherapy

Computer identifies patterns both in and outside lung tumors to predict chemotherapy benefit

Researchers Use Radiomics to Predict Who Will Benefit from Chemotherapy

March 21, 2019 — Using data from computed tomography (CT) images, researchers may be able to predict which lung cancer patients will respond to chemotherapy, according to a new study published in the journal Radiology: Artificial Intelligence.1

Platinum-based chemotherapy is typically the first-line treatment of advanced-stage non–small cell lung cancer (NSCLC). However, only about one in four patients responds well to this treatment. Currently, there is no way to predict which patients will benefit most from chemotherapy.

CT exams are routinely used for tumor staging and monitoring treatment response. Using a field of study called radiomics, researchers can extract quantitative, or measurable, data from CT images that can reveal disease characteristics not visible in the images alone.

“Our aim in this study was to determine whether an early prediction of response to chemotherapy is possible by using computer-extracted measurements of patterns both within and outside the lung nodule, along with the shape of the nodule, on baseline CT scans,” said Mohammadhadi Khorrami, M.S., a Ph.D. candidate from the Department of Biomedical Engineering, Case Western Reserve University School of Engineering in Cleveland, Ohio, who, along with Monica Khunger, M.D., from the Department of Internal Medicine at Cleveland Clinic, led the study.

The researchers set out to identify the role of radiomic texture features — both within and around the lung tumor — in predicting time to progression and overall survival, as well as response to chemotherapy in patients with NSCLC.

“This is the first study to demonstrate that computer-extracted patterns of heterogeneity, or diversity, from outside the tumor were predictive of response to chemotherapy,” Khunger said. “This is very critical because it could allow for predicting in advance of therapy which patients with lung cancer are likely to respond or not. This, in turn, could help identify patients who are likely to not respond to chemotherapy for alternative therapies such as radiation or immunotherapy.”

They analyzed data from 125 patients who had been treated with pemetrexed-based platinum doublet chemotherapy at Cleveland Clinic. The patients were divided randomly into two sets, with an equal number of responders and non-responders in the training set. The training set comprised 53 patients with NSCLC, and the validation set comprised 72 patients.

A computer analyzed the CT images of lung cancer to identify unique patterns of heterogeneity both inside and outside the tumor. These patterns were then compared between CT scans of patients who did and did not respond to chemotherapy. These feature patterns were then used to train a machine learning classifier to identify the likelihood that a lung cancer patient would respond to chemotherapy.

“When we looked at patterns inside the tumor, we got an accuracy of 0.68. But when we looked inside and outside, the accuracy went up to 0.77,” Khorrami said.

The results showed that the radiomic features derived from within the tumor and the area around the tumor were able to distinguish patients who responded to chemotherapy from those who did not. In addition, the radiomic features predicted time to progression and overall survival.

“Despite the large number of studies in the CT-radiomics space, the immediate surrounding tumor area, or the peritumoral region, has remained relatively unexplored,” Khorrami said. “Our results showed clear evidence of the role of peritumoral texture patterns in predicting response and time to progression after chemotherapy.”

Although the researchers did not explicitly study the basis for the identified radiomic features around the tumor, they hypothesize that these patterns reflect increased fibrotic content in chemotherapy-compliant tumors.

According to Khorrami, the radiomic data derived from CT images can also potentially help identify those patients who are at elevated risk for recurrence and who might benefit from more intensive observation and follow-up.

Watch the VIDEO: Application of Radiomics Imaging Technology in Radiation Therapy

For more information: www.pubs.rsna.org/journal/ai

Reference

1. Khorrami M., Khunger M., Zagouras A., et al. Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma. Radiology, March 20, 2019. https://doi.org/10.1148/ryai.2019180012

Related Content

Videos | Treatment Planning | August 21, 2019
This is an example of the Mirada DLCExpert deep learning software that automatically identifies organs, segments and
First Cancer Patient Treated With Accuray Radixact System With Synchrony Motion Tracking
News | Image Guided Radiation Therapy (IGRT) | August 21, 2019
Physicians at the Froedtert & the Medical College of Wisconsin (MCW) Clinical Cancer Center in Milwaukee have...
Videos | Treatment Planning | August 21, 2019
This is a lung cancer tumor radiotherapy...
Videos | Computed Tomography (CT) | August 21, 2019
This is a quick walk around of a mobile 32-slice...
Improved Imaging Technique Could Increase Chances of Prostate Cancer Survival
News | Prostate Cancer | August 20, 2019
According to the American Cancer Society, approximately one in nine men will be diagnosed with prostate cancer in their...
Imago Systems Announces Collaboration With Mayo Clinic for Breast Imaging

Image courtesy of Imago Systems

News | Mammography | August 14, 2019
Image visualization company Imago Systems announced it has signed a know-how license with Mayo Clinic. The multi-year...
Artificial Intelligence Could Yield More Accurate Breast Cancer Diagnoses
News | Artificial Intelligence | August 13, 2019
University of California Los Angeles (UCLA) researchers have developed an artificial intelligence (AI) system that...
The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

The CT scanner might not come with protocols that are adequate for each hospital situation, so at Phoenix Children’s Hospital they designed their own protocols, said Dianna Bardo, M.D., director of body MR and co-director of the 3D Innovation Lab at Phoenix Children’s.

Sponsored Content | Case Study | Radiation Dose Management | August 13, 2019
Radiation dose management is central to child patient safety. Medical imaging plays an increasing role in the accurate...
Videos | CT Angiography (CTA) | August 07, 2019
This is a quick walk around of the new Siemens Somatom Go.top cardiovascular edition compact computed tomography (CT)
Videos | CT Angiography (CTA) | August 07, 2019
This is a quick walk around of the GE Healthcare Cardiographe dedicated cardiac CT system on display at the...