News | April 01, 2014

Researchers Use PET Scanning to Evaluate Potential Therapies for Menkes Disease

PET imaging in Menkes disease model mice

In order to estimate the effect of disulfiram pretreatment on brain accumulation of 64CuCl2, PET imaging studies were performed on Menkes disease model mice.

PET imaging in Menkes disease model mice

Disulfiram pretreatment significantly increased copper accumulation in the brains of Menkes disease model mice.

April 1, 2014 — Scientists at the Riken Center for Life Science Technologies in Kobe, Japan, have used PET (positron emission tomography) imaging to visualize the distribution of copper in the body, which is deregulated in the genetic disorder Menkes disease, using a mouse model. This study may lay the groundwork for PET imaging studies on human Menkes disease patients to identify new therapy options.

Menkes disease, though rare, is a fearsome genetic disorder. Most affected babies die within the first few years of life. The disease is caused by an inborn fault in the body's ability to absorb copper. The standard treatment today for the 1 in 100,000 babies affected by the disorder is to inject copper, but this therapy has limited efficacy. Eventually the treatment becomes ineffective, leading to neurodeneration, and the copper accumulates in the kidneys, sometimes leading to renal failure.

As a result, treatments have been sought that enhance the accumulation of injected copper into the brain while preventing its accumulation in the kidney. Recently, disulfiram, a drug developed to treat alcoholism, has been suggested as a therapy for Menkes disease, since one of its actions is to enhance this copper accumulation in the brain.

Now, in a study published in the Journal of Nuclear Medicine, scientists at the Riken Center for Life Science Technologies, in collaboration with pediatricians from Osaka City University and Teikyo University, have used PET to show that a combination of copper injections and disulfiram or D-penicillamine allows a greater movement of copper to the brain, where it is needed, without accumulating in the kidneys.

In the study, researchers used Menkes disease model mice, which have an inborn defect in copper metabolism, and injected copper-64, a radioactive isotope of copper, into the mice. They then used PET scanning, a non-invasive procedure, to visualize how the copper moved throughout the body. They compared mice injected with copper alone to mice injected with copper along with one of two other drugs, disulfiram or D-penicillamine, and the distribution of the copper throughout the body was observed for a four-hour period.

The results showed that the mice given copper along with disulfiram had a relatively high concentration of copper in the brain without a significant increase in the kidneys. Surprisingly, it showed that the amount of copper going to the brain in mice treated with disulfiram was actually higher than in those treated with copper alone, suggesting that the drug has an effect on the passage of copper through the blood-brain barrier.

According to Satoshi Nozaki, one of the co-authors, "This study demonstrates that PET imaging can be a useful tool for evaluating new treatments for Menkes disease. Based on this study, we are planning to conduct clinical PET studies of patient with Menkes disease."

For more information: www.riken.jp/en/

Related Content

CORAR Supports Medicare Diagnostic Radiopharmaceutical Payment Equity Act of 2018
News | Radiopharmaceuticals and Tracers | October 12, 2018
October 12, 2018 — The Council on Radionuclides and Radiopharmaceuticals Inc.
Huntsman Cancer Institute Installs First Preclinical nanoScan 3T PET/MRI in U.S.
News | PET-MRI | October 10, 2018
The Center for Quantitative Cancer Imaging at Huntsman Cancer Institute (HCI) at the University of Utah in Salt Lake...
Technology and Radionucleotide Development Will Fuel Mobile Gamma Camera Adoption
News | Nuclear Imaging | September 27, 2018
Advancements in healthcare technology, particularly in the surgery category, have led to an increasing adoption of...
Bruker Introduces New High-Performance Preclinical PET/CT Si78 System
Technology | PET-CT | September 26, 2018
September 26, 2018 — Bruker recently announced the introduction of the new preclinical...
Lightvision near-infrared fluorescence imaging system
News | Women's Health | September 11, 2018
Shimadzu Corp.
The Siemens Biograph Vision PET-CT system was released in mid-2018.

The Siemens Biograph Vision PET-CT system was released in mid-2018.

Feature | Nuclear Imaging | September 07, 2018 | By Dave Fornell
Nuclear imaging technology for both single photon emission computed tomography (SPECT) and positron emission tomography...
PET Imaging Agent Predicts Brain Tau Pathology, Alzheimer's Diagnosis
News | PET Imaging | September 05, 2018
Eli Lilly and Co. and Avid Radiopharmaceuticals Inc. announced a Phase 3 study of positron emission tomography (PET)...
Brain Study of 62,454 Scans Identifies Drives of Brain Aging
News | SPECT Imaging | August 27, 2018
In the largest known brain imaging study, scientists from five institutions evaluated 62,454 brain single photon...
Abnormal Protein Concentrations Found in Brains of Military Personnel With Suspected CTE

Researchers are using the tracer, which is injected into a patient, then seen with a PET scan, to see if it is possible to diagnose chronic traumatic encephalopathy in living patients. In this image, warmer colors indicate a higher concentration of the tracer, which binds to abnormal proteins in the brain. Credit UCLA Health.

News | PET Imaging | August 24, 2018
August 24, 2018 — In a small study of
PET Tracer Identifies Estrogen Receptor Expression Differences in Breast Cancer Patients
News | PET Imaging | August 09, 2018
In metastatic breast cancer, prognosis and treatment is largely influenced by estrogen receptor (ER) expression of the...