News | PET-CT | June 14, 2021

Radiotracer Effective for Detection and Assessment of Lung Fibrosis

Positron emission tomography (PET) using a 68Ga-labeled fibroblast activation protein inhibitor (FAPI) can noninvasively identify and monitor pulmonary fibrosis, according to research presented at the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting.

A) Axial CT images through the mouse lungs at 7 and 14 days after intratracheal administration of bleomycin or saline (as a control), demonstrating increased lung fibrosis in the bleomycin group (white arrows). (B) CT attenuation histograms in Hounsfield units (HU) after lung segmentation demonstrate increased attenuation in the lungs in the bleomycin group than the control group (p <0.05), consistent with increasing fibrosis (n=3). (C) Representative axial PET/CT fusion images at 20 and 60 min demonstrating increased FAPI uptake in the lungs of the bleomycin group (white arrows) with no significant uptake in the control group (yellow arrows). (D) Time-activity curve of lung uptake ROI analysis demonstrating higher FAPI uptake in the lungs of the bleomycin group than the control (p < 0.05), 14 days after bleomycin (n=3). (E) Ex vivo biodistribution data of lung tissue demonstrating higher radiotracer uptake in the lungs of the bleomycin group than the control (n=3). *p<0.05, **p<0.01. Image created by CA Ferreira et al., University of Wisconsin-Madison, Madison, WI.

June 14, 2021 — Positron emission tomography (PET) using a 68Ga-labeled fibroblast activation protein inhibitor (FAPI) can noninvasively identify and monitor pulmonary fibrosis, according to research presented at the Society of Nuclear Medicine and Molecular Imaging 2021 Annual Meeting. By binding to activated fibroblasts present in affected lungs, FAPI-PET allows for direct imaging of the disease process.

Idiopathic pulmonary fibrosis (IPF) causes substantial scarring to the lungs, making it difficult for those impacted to breathe. It is a significant cause of morbidity and mortality in the United States, with more than 40,000 deaths annually. A major challenge in diagnosis and treatment of IPF is the lack of a specific diagnostic tool that can noninvasively diagnose and assess disease activity, which is crucial for the management of pulmonary fibrosis patients.

"CT scans can provide physicians with information on anatomic features and other effects of IPF but not its current state of activity. We sought to identify and image a direct noninvasive biomarker for early detection, disease monitoring and accurate assessment of treatment response," said Carolina de Aguiar Ferreira, PhD, a research associate at the University of Wisconsin-Madison in Madison, Wisc.

In the study, researchers targeted the fibroblast activation protein (FAP) that is overexpressed in IPF as a potential biomarker. Two groups of mice--one group with induced pulmonary fibrosis and one control group--were scanned with the FAPI-based PET/CT radiotracer 68Ga-FAPI-46 at multiple time points. Compared to the control group, the mice with induced pulmonary fibrosis had a much higher uptake of the radiotracer, allowing researchers to successfully identify and evaluate areas of IPF.

"Further validation of 68Ga-FAPI-46 for the detection and monitoring of pulmonary fibrosis would make this molecular imaging tool the first technique for early, direct, and noninvasive detection of disease. It would also provide an opportunity for molecular imaging to reduce the frequency of lung biopsies, which carry their own inherent risks," noted Ferreira. "This development will demonstrate that functional imaging can play an invaluable role in evaluation of the disease process."

Abstract 10. "Targeting Activated Fibroblasts for Non-invasive Detection of Lung Fibrosis," Carolina Ferreira, Zachary Rosenkrans, Ksenija Bernau, Jeanine Batterton, Christopher Massey, Alan McMillan, Nathan Sandbo, Ali Pirasteh and Reinier Hernandez, University of Wisconsin - Madison, Madison, Wisconsin; and Melissa Moore, Frank Valla and Christopher Drake, Sofie Biosciences, Dulles, Virginia.

For more information: www.snmmi.org

Related Content

The FLASH Effect significantly improves the therapeutic ratio for curing cancer

The FLASH Effect significantly improves the therapeutic ratio for curing cancer

News | Radiation Oncology | July 28, 2021
July 28, 2021 — IntraOp Medical Corporation announced that ...
Registration is now open for the Radiological Society of North America (RSNA) 107th Scientific Assembly and Annual Meeting, the world’s largest annual radiology forum, to be held at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | July 21, 2021
July 21, 2021 — Registration is now open for the Radiological Society of North America (...

Positrigo founders Max Ahnen, Ph.D. (left) and Jannis Fischer, Ph.D.

News | PET Imaging | July 16, 2021
Nearly one quarter of deaths from lung cancer could be avoided in high-risk populations through the adoption of targeted screening with low-dose computed tomography (LDCT) scans, as based on the results of the NELSON study.

Getty Images

News | Computed Tomography (CT) | July 11, 2021
July 11, 2021 — The report ‘Lung Cancer Screening: The Cost of Inaction’ shows that lung cancer screening pres
A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-high sensitivity that supports excellent spatial resolution and image quality. Given the long axial field of view (AFOV) of the uEXPLORER, study authors have proposed new, extended measurements for phantoms to characterize total-body PET imaging more appropriately. This research was published in the June issue of The Journal of Nuclear Medicine.

Human imaging examples of performance of uEXPLORER total-body PET scanner. (A) Axial slice from 18F-fluciclovine PET image (right), with corresponding fused image (middle) and CT image (left), of 68-y-old patient with castration-resistant metastatic prostate cancer, demonstrating clear visualization of 18F-flucicovine accumulation within 2.5-mm-diameter pulmonary nodule. (B) Maximum-intensity projection of representative clinical oncology 18F-FDG PET scan reconstructed with 20-, 5-, and 2.5-min durations, of 59-y-old patient with lung cancer. Images show primary tumor in left lower lobe of lung (dashed circle), with multiple variable-sized (0.8-6 cm) hilar, mediastinal, and lower esophageal nodal metastases (arrows) and ~1-cm 18FFDG-avid left adrenal nodule (arrowhead), which is visualized for all scan durations. Image created by Y. Abdelhafez and B.A. Spencer, EXPLORER Molecular Imaging Center, UC Davis, Sacramento, CA

News | PET Imaging | July 10, 2021
July 10, 2021 — A performance evaluation of the uEXPLORER total-body PET/CT scanner showed that it exhibits ultra-hig
American Society for Radiation Oncology (ASTRO) to host in-person Annual Meeting in Chicago, October 24-27

Getty Images

News | ASTRO | July 08, 2021
July 8, 2021 — Registration opens today for the American Society for Radiation Oncology's (...
Aduhelm should be initiated in patients with mild cognitive impairment due to Alzheimer’s disease or mild Alzheimer’s dementia

Getty Images

News | PET Imaging | July 08, 2021
July 8, 2021 — Biogen and...
Now a new study from Boston University School of Medicine (BUSM) highlights the impact that structural racism and residential segregation has on NSCLC outcomes.

Getty Images

News | Lung Imaging | June 29, 2021
June 29, 2021 — Lung cancer remains the leading cause of