News | Coronavirus (COVID-19) | December 07, 2020

MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program

MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program #COVID19 #coronavirus

Getty Images


December 7, 2020 — An analysis of lung tissues from patients with different types of pulmonary fibrosis - including cases triggered by COVID-19 - has revealed a promising molecular target to ameliorate the chronic and irreversible disease. Experiments in mouse models of lung fibrosis showed that administering blockers of an epigenetic regulator called MBD2 via intratracheal inhalation protected the mice against fibrotic lung injury, highlighting a potential viable therapy. A poor understanding of what causes pulmonary fibrosis has greatly hindered the development of treatments, and to this day, no effective therapy is available other than lung transplantation. To tackle this limitation, Yi Wang and colleagues studied lung samples from patients with pulmonary fibrosis triggered by one of three causes: SARS-CoV-2 infection, systemic sclerosis-associated interstitial lung disease, or an unknown factor. The researchers also studied mouse models of pulmonary fibrosis, which they induced in the animals by administering the compound bleomycin. All cases of pulmonary fibrosis, they found, were characterized by overexpression of MBD2. This activity localized in areas occupied by macrophages - known contributors to the development of pulmonary fibrosis. To investigate this further, the scientists depleted the Mbd2 gene in macrophages of mice, which protected the animals against pulmonary fibrosis, characterized by markedly reduced macrophage accumulation in the lung following administration of bleomycin. As well, direct administration of liposomes - established carriers of inhaled drugs - loaded with Mbd2 silencer RNA into the trachea of mice protected them from lung injuries and fibrosis. Since MBD2 itself does not affect the essential epigenetic process of DNA methylation, inhibiting the molecule could prove to be a safe way to treat pulmonary fibrosis. However, future studies will first need to assess the impact of altered MBD2 expression in other types of cells relevant to pulmonary fibrosis, the authors say.

For more information: www.aaas.org


Related Content

News | Pediatric Imaging

June 13, 2024 — Cervical spine injuries in children are relatively rare but can have serious consequences, like ...

Time June 13, 2024
arrow
News | Neuro Imaging

June 12, 2024 — Brainet, a developer of cutting-edge diagnostic tools for assessing brain health, and SimonMed Imaging ...

Time June 12, 2024
arrow
News | SPECT-CT

June 11, 2024 — A newly developed radiotracer can generate high quality and readily interpretable images of cardiac ...

Time June 11, 2024
arrow
News | PET Imaging

June 11, 2024 — A new ultra-high-performance brain PET system allows for the direct measurement of brain nuclei as never ...

Time June 11, 2024
arrow
News | Artificial Intelligence

June 11, 2024 — A new study led by researchers at Emory AI.Health, published in the Journal of Computers in Medicine and ...

Time June 11, 2024
arrow
News | Breast Imaging

June 7, 2024 — Scholars and studies funded by Susan G. Komen(R), the world’s leading breast cancer organization ...

Time June 07, 2024
arrow
News | Radiopharmaceuticals and Tracers

June 7, 2024 — Shine Technologies, LLC, a pioneer in next-generation fusion-based technology, today announced a new ...

Time June 07, 2024
arrow
News | Digital Radiography (DR)

June 6, 2024 — In a landmark study, the latest in technology innovation by Konica Minolta Healthcare was used to develop ...

Time June 06, 2024
arrow
News | Radiology Business

June 5, 2024 — A new Harvey L. Neiman Health Policy Institute study found that from 2014 to 2023 the number of medical ...

Time June 05, 2024
arrow
News | Artificial Intelligence

June 5, 2024 — Nano-X Imaging, an innovative medical imaging technology company, today announced that its deep-learning ...

Time June 05, 2024
arrow
Subscribe Now