News | Breast Imaging | April 29, 2022

Analysis points to potential of human-tech complementary approach to detecting cancer

In these three examples of soft tissue lesions, the images are unperturbed on the left column and blurred on the right column. The AI system was sensitive to the blurring, while the radiologists were not. This showed that the AI system relies on details in soft tissue lesions that are considered irrelevant by the radiologists. Image courtesy of Taro Makino, NYU’s Center for Data Science

In these three examples of soft tissue lesions, the images are unperturbed on the left column and blurred on the right column. The AI system was sensitive to the blurring, while the radiologists were not. This showed that the AI system relies on details in soft tissue lesions that are considered irrelevant by the radiologists. Image courtesy of Taro Makino, NYU’s Center for Data Science


April 29, 2022 — Radiologists and artificial intelligence systems yield significant differences in breast cancer screenings, a team of researchers has found. Its work, which appears in the journal Nature Scientific Reports, reveals the potential value of using both human and AI methods in making medical diagnoses. 

“While AI may offer benefits in healthcare, its decision-making is still poorly understood,” explains Taro Makino, a doctoral candidate in NYU’s Center for Data Science and the paper’s lead author. “Our findings take an important step in better comprehending how AI yields medical assessments and, with it, offer a way forward in enhancing cancer detection.”

The analysis centered on a specific AI tool: Deep neural networks (DNNs), which are layers of computing elements—“neurons”—simulated on a computer. A network of such neurons can be trained to “learn” by building many layers and configuring how calculations are performed based on data input—a process called “deep learning.” 

In the Nature Scientific Reports work, the scientists compared breast-cancer screenings read by radiologists with those analyzed by DNNs. 

The researchers, who also included Krzysztof Geras, Ph.D., Laura Heacock, MD, and Linda Moy, MD, faculty in NYU Grossman School of Medicine’s Department of Radiology, found that DNNs and radiologists diverged significantly in how they diagnose a category of malignant breast cancer called soft tissue lesions.

“In these breast-cancer screenings, AI systems consider tiny details in mammograms that are seen as irrelevant by radiologists,” explains Geras. “This divergence in readings must be understood and corrected before we can trust AI systems to help make life-critical medical decisions.”

More specifically, while radiologists primarily relied on brightness and shape, the DNNs used tiny details scattered across the images. These details were also concentrated outside of the regions deemed most important by radiologists.

By revealing such differences between human and machine perception in medical diagnosis, the researchers moved to close the gap between academic study and clinical practice.

“Establishing trust in DNNs for medical diagnosis centers on understanding whether and how their perception is different from that of humans,” says Moy. “With more insights into how they function, we can both better recognize the limits of DNNs and anticipate their failures.” 

“The major bottleneck in moving AI systems into the clinical workflow is in understanding their decision-making and making them more robust,” adds Makino. “We see our research as advancing the precision of AI’s capabilities in making health-related assessments by illuminating, and then addressing, its current limitations.”

For more information: www.nyu.edu

Related Breast Imaging with AI Content:

AI Shows Potential in Breast Cancer Screening Programs

Artificial Intelligence Tool Improves Accuracy of Breast Cancer Imaging

Southwest Diagnostic Imaging Center Uses Artificial Intelligence to Optimize Breast Tomosynthesis Interpretations

AI Provides Accurate Breast Density Classification


Related Content

News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
Feature | Radiation Oncology | Kyle Hardner

Genomics has guided personalized cancer treatments for the past two decades. Now, AI biomarkers are expanding the field ...

Time December 09, 2025
arrow
News | Breast Imaging

Dec. 01, 2025 — DeepHealth, a wholly owned subsidiary of RadNet, Inc., has launched the DeepHealth Breast Suite,2 an end ...

Time December 04, 2025
arrow
News | Women's Health

Dec. 1, 2025 — ScreenPoint Medical has completed a commercial agreement making its Transpara breast-imaging AI portfolio ...

Time December 03, 2025
arrow
News | Information Technology

Dec. 1, 2025 — BioSked has announced a major expansion of its Momentum scheduling platform, introducing one of the first ...

Time December 03, 2025
arrow
News | Mammography

Nov. 30, 2025 — At RSNA 2025, Siemens Healthineers will introduce new capabilities for its Mammomat B.brilliant ...

Time December 02, 2025
arrow
News | Radiology Imaging

Dec. 1, 2025 — Rad AI has launched next-generation speech recognition technology (patent pending) that dramatically ...

Time December 02, 2025
arrow
News | RSNA 2025

Dec. 2, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, will present 14 studies at RSNA ...

Time December 02, 2025
arrow
News | Women's Health

Dec. 1, 2025 — A study of data from seven outpatient facilities in the New York region found that 20-24% of all the ...

Time December 02, 2025
arrow
News | X-Ray

Dec. 1, 2025 — Medimaps Group S.A., a provider of AI-driven bone microarchitecture imaging solutions, will make the ...

Time December 01, 2025
arrow
Subscribe Now