News | Prostate Cancer | January 13, 2020

Prostate Cancer can now be Diagnosed Better Using Artificial Intelligence

prostate cancer study

January 13, 2020 — Researchers at Radboud university medical center have developed a "deep learning" system that is better than most pathologists at determining the aggressiveness of prostate cancer. The AI system, which uses tissue samples to arrive at its diagnosis, taught itself to identify prostate cancer based on data from over 1,200 patients. The Radboud team is now working with researchers from the Karolinska Institute in Sweden and Kaggle, a Google subsidiary, with the intention to continue developing these methods as part of a major international competition.

Prostate cancer is a frequently occurring type of cancer, but not always aggressive: more men die with prostate cancer than from prostate cancer. However, its treatment has many consequences for the quality of life of patients, so determining aggressiveness is an important step in choosing a treatment. To determine the aggressiveness of the cancer, pieces of tissue (biopsies) are taken from the prostate, which are scored by a pathologist. This Gleason score is then used to classify biopsies into five groups — the Gleason Grade Groups — which indicate the risk of dying from prostate cancer. However, this is a subjective process; whether and how a patient is treated may depend on the pathologist who assesses the tissue.

Better than a Pathologist

The researchers at Radboudumc developed an AI system that examines those biopsies the same way a pathologist does. The AI system also determines the Gleason score, and then the system can classify a biopt according to the Gleason Grade Groups. By means of deep learning, the system examined thousands of images of biopsies to learn what a healthy prostate is, and what more or less aggressive prostate cancer tissue looks like. Researcher Wouter Bulten described this process: "The AI system has now been trained with 5,759 biopsies from more than 1,200 patients. When we compared the performance of the algorithm with that of 15 pathologists from various countries and with differing levels of experience, our system performed better than ten of them and was comparable to highly experienced pathologists." An additional advantage of such a computer system is that it is consistent and can be used anywhere; the treatment of a patient no longer depends on the pathologist looking at the tissue.

An International Competition

As 1.2 million men globally are diagnosed with prostate cancer every year, the development of an AI diagnostic system is interesting for many research groups and companies. "It is advantageous that we are an academic hospital," said Bulten. "We are close to the patient and the practitioner, and have our own database of biopsies." As a next step, the Radboud university medical center team — together with researchers from the Karolinska Institute in Sweden and Kaggle, a subsidiary of Google specialized in data science competitions — wants to hold an international competition in which participants try to beat the Radboudumc algorithm. The insights resulting from this competition will then be used to improve the algorithms.

Background: What is Deep Learning?

Deep learning is a term used for systems that learn in a way that is similar to how our brain works. It consists of networks of electronic 'neurons', each of which learns to recognize one aspect of the desired image. Then it follows the principles of learning by doing, and practice makes perfect. The system is fed more and more images that include relevant information saying — in this case —whether this is cancer or not, and if so, what the Gleason score is. The system then learns to recognize which characteristics belong to cancer, and the more pictures it sees, the better it can recognize those characteristics in undiagnosed images. A major advantage of these systems is also that they learn much faster than humans and can work 24 hours a day.

The Nijmegen study, authored by Wouter Bulten, Geert Litjens and others, has been published in The Lancet Oncology.

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Professor David Sebag-Montefiore (Image courtesy of the University of Leeds)

Professor David Sebag-Montefiore (Image courtesy of the University of Leeds)

News | Radiation Therapy | April 07, 2020
April 7, 2020 — An intern...
Eclipse v16 has received CE mark and is 510(k) pending
News | Proton Therapy | April 06, 2020
April 6, 2020 — Driven by its Intelligent Cancer Care approach in developing new solutions that use advanced technolo
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
Women are more likely to be cured of cancer by radiotherapy but the side effects are worse.

Women are more likely to be cured of cancer by radiotherapy but the side effects are worse. Image by Mark Kostich

News | Radiation Therapy | March 30, 2020
March 30, 2020 — Women undergoing radiotherapy for
A new framework from an international team of experts aims to help protect patients and providers, and conserve protective equipment for frontline healthcare workers #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Prostate Cancer | March 30, 2020
March 30, 2020 — In the wake of the COVID-19 pan
Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...