News | Prostate Cancer | January 13, 2020

Prostate Cancer can now be Diagnosed Better Using Artificial Intelligence

prostate cancer study

January 13, 2020 — Researchers at Radboud university medical center have developed a "deep learning" system that is better than most pathologists at determining the aggressiveness of prostate cancer. The AI system, which uses tissue samples to arrive at its diagnosis, taught itself to identify prostate cancer based on data from over 1,200 patients. The Radboud team is now working with researchers from the Karolinska Institute in Sweden and Kaggle, a Google subsidiary, with the intention to continue developing these methods as part of a major international competition.

Prostate cancer is a frequently occurring type of cancer, but not always aggressive: more men die with prostate cancer than from prostate cancer. However, its treatment has many consequences for the quality of life of patients, so determining aggressiveness is an important step in choosing a treatment. To determine the aggressiveness of the cancer, pieces of tissue (biopsies) are taken from the prostate, which are scored by a pathologist. This Gleason score is then used to classify biopsies into five groups — the Gleason Grade Groups — which indicate the risk of dying from prostate cancer. However, this is a subjective process; whether and how a patient is treated may depend on the pathologist who assesses the tissue.

Better than a Pathologist

The researchers at Radboudumc developed an AI system that examines those biopsies the same way a pathologist does. The AI system also determines the Gleason score, and then the system can classify a biopt according to the Gleason Grade Groups. By means of deep learning, the system examined thousands of images of biopsies to learn what a healthy prostate is, and what more or less aggressive prostate cancer tissue looks like. Researcher Wouter Bulten described this process: "The AI system has now been trained with 5,759 biopsies from more than 1,200 patients. When we compared the performance of the algorithm with that of 15 pathologists from various countries and with differing levels of experience, our system performed better than ten of them and was comparable to highly experienced pathologists." An additional advantage of such a computer system is that it is consistent and can be used anywhere; the treatment of a patient no longer depends on the pathologist looking at the tissue.

An International Competition

As 1.2 million men globally are diagnosed with prostate cancer every year, the development of an AI diagnostic system is interesting for many research groups and companies. "It is advantageous that we are an academic hospital," said Bulten. "We are close to the patient and the practitioner, and have our own database of biopsies." As a next step, the Radboud university medical center team — together with researchers from the Karolinska Institute in Sweden and Kaggle, a subsidiary of Google specialized in data science competitions — wants to hold an international competition in which participants try to beat the Radboudumc algorithm. The insights resulting from this competition will then be used to improve the algorithms.

Background: What is Deep Learning?

Deep learning is a term used for systems that learn in a way that is similar to how our brain works. It consists of networks of electronic 'neurons', each of which learns to recognize one aspect of the desired image. Then it follows the principles of learning by doing, and practice makes perfect. The system is fed more and more images that include relevant information saying — in this case —whether this is cancer or not, and if so, what the Gleason score is. The system then learns to recognize which characteristics belong to cancer, and the more pictures it sees, the better it can recognize those characteristics in undiagnosed images. A major advantage of these systems is also that they learn much faster than humans and can work 24 hours a day.

The Nijmegen study, authored by Wouter Bulten, Geert Litjens and others, has been published in The Lancet Oncology.

Related Content

Newly released study results present a strong case for lung cancer screening in New Zealand — particularly for Māori whose mortality rates are between three and four times higher than other ethnic groups.

Image courtesy of Siemens Healthineers

News | Lung Imaging | September 30, 2020
September 30, 2020 — Newly released study results present a strong case for...
he Centers for Medicare and Medicaid Services (CMS) published the “Specialty Care Models to Improve Quality of Care and Reduce Expenditures (CMS-5527)” final rule.

Getty Images

News | Radiation Oncology | September 29, 2020
September 29, 2020 — On Sept.
Important milestone demonstrates the unrivalled experience, technological innovation and global market leadership of IBA and its clinical partners
News | Proton Therapy | September 25, 2020
September 25, 2020 — IBA (Ion Beam Applications SA) announced that more than 100,000 patients have now been treated w
The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray.

The cartilage in this MRI scan of a knee is colorized to show greater contrast between shades of gray. Image courtesy of Kundu et al. (2020) PNAS

News | Artificial Intelligence | September 22, 2020
September 22, 2020 — Researchers at the University of Pitts...
New research from King's College London has found that COVID-19 may be diagnosed on the same emergency scans intended to diagnose stroke.

Canon Medical Systems

News | Cardiac Imaging | September 22, 2020
September 22, 2020 — New research from King's College London has
Philips Azurion Lung Edition supports high precision diagnosis and minimally invasive therapy in one room
News | Lung Imaging | September 21, 2020
September 21, 2020 — Philips introduced...
Final rule includes mandatory participation for nearly 1,000 practices and does not allow sufficient time for transition

Getty Images

News | Radiation Oncology | September 21, 2020
September 21, 2020 — In response to the September 18 ...
According to a new report published by P&S Intelligence, the global radiotherapy market is expected to expand from $7.2M in 2019 to $17M by 2030.

Image courtesy of Accuray

Feature | Radiation Therapy | September 21, 2020 | By Melinda Taschetta-Millane
According to a...