News | Prostate Cancer | July 15, 2016

Photoacoustic Imaging Is Promising Option for Noninvasive Monitoring of Prostate Cancer

Imaging technology may lead to better monitoring of prostate tumors and treatment decision-making

photoacoustic imaging

Images of prostate cells captured through photoacoustic imaging. Top: cancer cells that express the targeted cancer marker, PSMA; bottom: cells that lack PSMA. A research team led by Kent Nastiuk of Roswell Park Cancer Institute has published new evidence that this approach can be a useful tool in monitoring and selecting treatments for many cancers.

While active surveillance is often recommended for patients with nonaggressive prostate cancer to reduce unnecessary treatment, the challenge for clinicians is to monitor and distinguish early-stage tumors from advanced cancers. A team of scientists led by researchers from Roswell Park Cancer Institute have demonstrated that photoacoustic imaging (PAI) may be an effective tool for more accurately viewing and monitoring prostate cancer. The new research has been published in the June 2016 issue of the Journal of Biomedical Optics.

Photoacoustic imaging is an emerging noninvasive imaging modality that has not yet been used in clinical settings. Using photoacoustic imaging, this team of scientists focused a laser light on prostate cells and then “listened” using ultrasound technology to see how a dye attached to a specific prostate cancer marker, PSMA, reacted to the light waves. They chose to study this technology’s use in imaging prostate cancer, as the prostate can be imaged in situ. Photoacoustic imaging of these prostate cells, the researchers found, enabled good discrimination between cells with and without the cancer marker.

“This proof-of-concept study demonstrates that this technology may allow for real-time monitoring of prostate cancer in patients during the course of active surveillance. For patients with more aggressive disease, the technology could offer more precise targeting of biopsies to confirm the need for definitive therapy,” said senior author of the study Kent Nastiuk, Ph.D., assistant professor of cancer genetics and genitourinary cancers at Roswell Park. “This technology offers the potential to confirm the initial prostate cancer diagnosis, guide biopsies and monitor tumor volume — which is currently not measureable — for improved case management and treatment decision-making.”

Nastiuk’s co-authors include scientists from Roswell Park Cancer Institute, the University of Rochester and the Rochester Institute of Technology.

The study, “Photoacoustic Imaging with an Acoustic Lens Detects Prostate Cancer Cells Labeled with PSMA-targeting Near Infra-red Dye-conjugates,” is available at biomedicaloptics.spiedigitallibrary.org.

This work was supported by the National Cancer Institute (project nos. R01CA151753, R15CA192148 and P30CA16056), National Institute of Biomedical Imaging and Bioengineering (project no. R15EB019726), National Institute of Arthritis and Musculoskeletal and Skin Diseases (project no. P30AR061307), the U.S. Department of Defense (award no. W81XWH-14-1-0242) and the Sonya A. Sinicki Foundation for Cancer Research (award 615SF).

 

Related Content

Chest CT images in a 34-year-old man with fever for 4 days. Positive result of reverse-transcription polymerase chain reaction assay for severe acute respiratory syndrome coronavirus 2 using a swab sample was obtained on February 8, 2020. Dates of examination are shown on images. A, Chest CT scan with magnification of lesions in coronal and sagittal planes shows a nodule with reversed halo sign in left lower lobe (box) at the early stage of the pneumonia. B, Chest CT scans in different axial planes and coro

Chest CT images in a 34-year-old man with fever for 4 days. Positive result of reverse-transcription polymerase chain reaction assay for severe acute respiratory syndrome coronavirus 2 using a swab sample was obtained on February 8, 2020. Dates of examination are shown on images. A, Chest CT scan with magnification of lesions in coronal and sagittal planes shows a nodule with reversed halo sign in left lower lobe (box) at the early stage of the pneumonia. B, Chest CT scans in different axial planes and coronal reconstruction show bilateral multifocal ground-glass opacities. The nodular opacity resolved.

News | Coronavirus (COVID-19) | November 29, 2020
November 29, 2020 — The Radiological Society of North America (...
During active surveillance, prostate cancer is carefully monitored for signs of progression through regular prostate-specific antigen (PSA) screening, prostate exams, imaging, and repeat biopsies.

Getty Images

News | Prostate Cancer | November 18, 2020
November 18, 2020 — ...
Penn study supports the use of more testicular shielding for men and children during diagnostics

Getty Images

News | Radiology Imaging | November 16, 2020
November 16, 2020 — Early and repeated exposures to diagnostic imaging, such as X-rays and...
Dia's LVivo artificial intelligence software can help automate many features of echocardiograms to speed workflow and aid novice users. The software is now integrated into the Konica Minolta Exa PACS. 

Dia's LVivo artificial intelligence software can help automate many features of echocardiograms to speed workflow and aid novice users. The software is now integrated into the Konica Minolta Exa PACS. 

News | Artificial Intelligence | November 12, 2020
November 12, 2020 – Konica Minolta Healthcare Americas Inc. and DiA Imaging Analysis Ltd.
An injured sonographer can be detrimental to institutions and clinics facing financial strain and lack of workforce readiness due to COVID-19.  
Sponsored Content | Case Study | Ultrasound Imaging | November 12, 2020
There is a high incidence of ultrasound work-related musculoskeletal disorders (WRMSD) among...
Minimizing delays to treatment could improve cancer survival rates, say researchers

Getty Images

News | Radiation Oncology | November 10, 2020
November 10, 2020 — People whose treatment for cancer is delayed by even one month have in many cases a 6 to 13% high
Enhanced axial CT (A) shows diffuse pleural thickening (arrow) with a maximum thickness of 3.17 mm. US image for the corresponding lesion on CT (B) shows diffuse pleural thickening (arrowheads) with a maximum thickness of 3.25 mm. The needle pathway length, measured as the needle length through the pleural lesion, was 6.54 mm (asterisk). Pleural puncture angle (exact value not indicated) is depicted as the angle between the outer line of the pleura and the biopsy needle (thin arrow).

Enhanced axial CT (A) shows diffuse pleural thickening (arrow) with a maximum thickness of 3.17 mm. US image for the corresponding lesion on CT (B) shows diffuse pleural thickening (arrowheads) with a maximum thickness of 3.25 mm. The needle pathway length, measured as the needle length through the pleural lesion, was 6.54 mm (asterisk). Pleural puncture angle (exact value not indicated) is depicted as the angle between the outer line of the pleura and the biopsy needle (thin arrow).

News | Ultrasound Imaging | November 09, 2020
November 9, 2020 — According to an