News | Prostate Cancer | July 15, 2016

Photoacoustic Imaging Is Promising Option for Noninvasive Monitoring of Prostate Cancer

Imaging technology may lead to better monitoring of prostate tumors and treatment decision-making

photoacoustic imaging

Images of prostate cells captured through photoacoustic imaging. Top: cancer cells that express the targeted cancer marker, PSMA; bottom: cells that lack PSMA. A research team led by Kent Nastiuk of Roswell Park Cancer Institute has published new evidence that this approach can be a useful tool in monitoring and selecting treatments for many cancers.

While active surveillance is often recommended for patients with nonaggressive prostate cancer to reduce unnecessary treatment, the challenge for clinicians is to monitor and distinguish early-stage tumors from advanced cancers. A team of scientists led by researchers from Roswell Park Cancer Institute have demonstrated that photoacoustic imaging (PAI) may be an effective tool for more accurately viewing and monitoring prostate cancer. The new research has been published in the June 2016 issue of the Journal of Biomedical Optics.

Photoacoustic imaging is an emerging noninvasive imaging modality that has not yet been used in clinical settings. Using photoacoustic imaging, this team of scientists focused a laser light on prostate cells and then “listened” using ultrasound technology to see how a dye attached to a specific prostate cancer marker, PSMA, reacted to the light waves. They chose to study this technology’s use in imaging prostate cancer, as the prostate can be imaged in situ. Photoacoustic imaging of these prostate cells, the researchers found, enabled good discrimination between cells with and without the cancer marker.

“This proof-of-concept study demonstrates that this technology may allow for real-time monitoring of prostate cancer in patients during the course of active surveillance. For patients with more aggressive disease, the technology could offer more precise targeting of biopsies to confirm the need for definitive therapy,” said senior author of the study Kent Nastiuk, Ph.D., assistant professor of cancer genetics and genitourinary cancers at Roswell Park. “This technology offers the potential to confirm the initial prostate cancer diagnosis, guide biopsies and monitor tumor volume — which is currently not measureable — for improved case management and treatment decision-making.”

Nastiuk’s co-authors include scientists from Roswell Park Cancer Institute, the University of Rochester and the Rochester Institute of Technology.

The study, “Photoacoustic Imaging with an Acoustic Lens Detects Prostate Cancer Cells Labeled with PSMA-targeting Near Infra-red Dye-conjugates,” is available at biomedicaloptics.spiedigitallibrary.org.

This work was supported by the National Cancer Institute (project nos. R01CA151753, R15CA192148 and P30CA16056), National Institute of Biomedical Imaging and Bioengineering (project no. R15EB019726), National Institute of Arthritis and Musculoskeletal and Skin Diseases (project no. P30AR061307), the U.S. Department of Defense (award no. W81XWH-14-1-0242) and the Sonya A. Sinicki Foundation for Cancer Research (award 615SF).

 

Related Content

Amazon Comprehend Medical Brings Medical Language Processing to Healthcare
News | Artificial Intelligence | February 15, 2019
Amazon recently announced Amazon Comprehend Medical, a new HIPAA-eligible machine learning service that allows...
Fujifilm Exhibits Enterprise Imaging Solutions and Artificial Intelligence Initiative at HIMSS 2019
News | Enterprise Imaging | February 15, 2019
Fujifilm Medical Systems U.S.A. Inc. and Fujifilm SonoSite Inc. showcased their enterprise imaging and informatics...
Micro-Ultrasound and Artificial Intelligence Combining to Detect Prostate Cancer
News | Prostate Cancer | February 12, 2019
Cambridge Consultants has partnered with Exact Imaging, makers of the ExactVu micro-ultrasound platform, as the two...
An example of Philips' TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal.

An example of Philips' TrueVue technology, which offers photo-realistic rendering and the ability to change the location of the lighting source on 3-D ultrasound images. In this example of two Amplazer transcatheter septal occluder devices in the heart, the operator demonstrating the product was able to push the lighting source behind the devices into the other chamber of the heart. This illuminated a hole that was still present that the occluders did not seal. 

Feature | Ultrasound Imaging | February 07, 2019 | Dave Fornell, Editor
Here is a list of six key trends in ul...
Epiq Elite for Obstetrics and Gynecology delivers high image quality and lifelike 3-D scans

The Epiq Elite for Obstetrics & Gynecology. Image courtesy of Philips Healthcare.

Technology | Ultrasound Imaging | February 07, 2019
Philips announced the launch of the Epiq Elite ultrasound system, a new premium ultrasound that combines the latest...
ASE Releases Guidelines for Transesophageal Echo in Congenital Heart Disease
News | Ultrasound Transesophageal echo (TEE) | February 05, 2019
February 5, 2019 – The American Society of Echocardiography (ASE) released a new document that provides a comprehensi
Study Assesses Risk of MRI Exams for Patients With Tattoos
News | Magnetic Resonance Imaging (MRI) | February 01, 2019
A new European study concluded that magnetic resonance imaging (MRI) exams pose little risk for people with tattoos,...
Stereotactic Radiotherapy Improves Long-Term Survival in Stage-IV Cancers
News | Stereotactic Body Radiation Therapy (SBRT) | January 31, 2019
The first report from a phase II, multi-center clinical trial indicates stereotactic radiation can extend long-term...
Konica Minolta Releases Sonimage HS1 Ultrasound Software Upgrade
News | Ultrasound Imaging | January 31, 2019
Konica Minolta Healthcare Americas Inc. released a new software upgrade for the Sonimage HS1 Ultrasound System that...