October 8, 2009 - Royal Philips Electronics said it has developed a digital silicon photomultiplier technology that will allow faster and more accurate photon (the basic quantum unit of light) counting in a wide range of applications where ultra-low light levels need to be measured.

Areas where the new technology could have a major impact include medical imaging, in particular positron emission tomography (PET), and in-vitro diagnostic tests such as DNA sequencing and protein/DNA microarrays. Other relevant areas include high-energy physics, night-vision systems and other applications that currently use light detectors that are based on so-called photomultiplier tubes.

As with virtually all ‘solid-state’ alternatives, this new digital silicon photomultiplier technology should enable the production of smaller and lighter battery-powered equipment for use in areas such as medical diagnostics and surveillance. The key to the technology lies in its ability to combine high-quality single-photon detectors (silicon avalanche photodiodes) with low-voltage CMOS logic on the same silicon substrate. Moreover, these new silicon photomultipliers can be manufactured using a conventional CMOS process technology.

The performance of Philips’ prototype detector, in terms of its speed and dark count level (background noise), will be presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, which will take place on October 25-31 in Orlando, Fla. Other important features of this new light detection technology include its robustness, low power consumption, light detection efficiency, and very high level of integration of the optical detection and associated electronic components.

“Solid-state digital technology has already taken over from outdated analog solutions in every-day applications such as TVs, camcorders and photography,” says Rob Ballizany, vice president of Philips Corporate Technologies and responsible for the commercialization of this new technology. “...high-end professional applications such as medical imaging will undergo a similar switch to digital detectors in the next few years.”

For more information: www.medical.philips.com

Related Content

News | SNMMI

June 22, 2022 — Andrei Iagaru, MD, FACNM, professor of radiology (nuclear medicine) and chief of the Division of Nuclear ...

Time June 22, 2022
arrow
News | PET Imaging

June 15, 2022 — Poor functional outcomes after a heart attack can be predicted with a new PET imaging agent, 68Ga-FAPI ...

Time June 15, 2022
arrow
News | Prostate Cancer

June 15, 2022 — Current guidelines used to plan salvage radiation treatments in patients with local recurrence of ...

Time June 15, 2022
arrow
News | PET-CT

June 14, 2022 — A novel artificial intelligence method can be used to generate high-quality “PET/CT” images and ...

Time June 14, 2022
arrow
News | Prostate Cancer

June 10, 2022 — GE Healthcare provides cutting-edge molecular imaging solutions that enable and increase access to ...

Time June 10, 2022
arrow
News | Contrast Media

May 13, 2022 — The ACR Committee on Drugs and Contrast Media, within the ACR Commission on Quality and Safety, is aware ...

Time May 13, 2022
arrow
News | Prostate Cancer

April 15, 2022 — Prostate cancer is the most common malignant tumor in men in Germany, with about 62,000 new cases ...

Time April 14, 2022
arrow
News | PET-CT

April 11, 2022 — A novel nuclear medicine combination therapy has been proven safe and effective in men with heavily pre ...

Time April 11, 2022
arrow
News | PET-CT

February 23, 2022 — Surge in demand for the effective diagnostic system, technological advancements, and increase in the ...

Time February 23, 2022
arrow
News | PET-CT

February 15, 2022 — The global PET-CT scanner device market size is expected to reach USD 3.34 billion by 2028 according ...

Time February 15, 2022
arrow
Subscribe Now