February 4, 2011 – Positron emission tomography (PET) can image metabolic changes following treatment with the protein kinase inhibitor vandetanib, helping to define the therapy’s effectiveness, according to research in The Journal of Nuclear Medicine. Currently being tested in clinical trials, vandetanib inhibits the function of the RET (rearranged-during-transfection protein) proto-oncogene and other protein kinases involved in the development and progression of cancer.

"For the most part, clinical trials have been measuring the effectiveness of vandetanib by changes in tumor size,” said Martin A. Walter, M.D., lead author of the study. “Based on the activating effects of mutated RET and other protein kinases on numerous intracellular metabolic pathways, we hypothesized that PET imaging could play a role in the early evaluation of response to vandetanib."

The study examined the usefulness of metabolic imaging to determine response to vandetanib in three ways. First, medullary thyroid cancer cells were used to create an in vitro model. After cultivation, the cells were treated with vandetanib, and changes in the metabolic profile of the cells were successfully monitored by transcriptional profiling and by radiotracer uptake studies.

Using the same untreated cells, the researchers then created an in vivo model by injecting mice with the cancerous cells and treating them with vandetanib. Small animal PET/computed tomography (CT) imaging was performed and was found to reproduce the in vitro findings of metabolic activity after three days.

Finally, a 43-year old patient with biopsy-proven metastasized medullary thyroid cancer was treated with vandetanib. PET scans taken at 12 and 24 weeks after treatment were able to detect metabolic response to vandetanib, consistent with the in vitro and in vivo samples.

"With the increasing number of available treatment options, careful patient selection is necessary to ensure targeted therapy is administered to those most likely to gain clinical benefit," Walter said. "The identification of markers of treatment efficacy is a key factor for the success of these novel treatment approaches."

Walter also said that the innovative concept has great potential in the field of molecular imaging.

For more information: www.snm.org

Related Content

News | PET Imaging

October 19, 2021 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time October 19, 2021
arrow
News | Digital Pathology

October 18, 2021 — Histolix, a leading developer of direct-to-digital read pathology solutions, announced it has ...

Time October 18, 2021
arrow
News | PET Imaging

October 18, 2021 — PSMA (prostate-specific membrane antigen) PET/CT is more accurate than conventional CT in the ...

Time October 18, 2021
arrow
News | Women's Health

October 11, 2021 — Electrical engineering professor Magda El-Shenawee’s effort to develop a more accurate and less ...

Time October 11, 2021
arrow
Feature | Cardiac Imaging

October 6, 2021 – A new study published in Radiology: Cardiothoracic Imaging on cardiac imaging trends over a decade ...

Time October 06, 2021
arrow
News | Prostate Cancer

September 24, 2021 — Scientists have identified two subtypes of metastatic prostate cancer that respond differently to ...

Time September 24, 2021
arrow
News | Women's Health

September 22, 2021 — Radiation therapy is an effective and widely used treatment for breast cancer. While the benefits ...

Time September 22, 2021
arrow
News | Radiopharmaceuticals and Tracers

September 17, 2021 — Blue Earth Diagnostics, a Bracco company and recognized leader in the development and ...

Time September 17, 2021
arrow
Feature | PET Imaging | By Todd Sasser, Ph.D.

The use of positron emission tomography (PET) imaging in preclinical oncology investigations has shown the ability to ...

Time September 14, 2021
arrow
News | PET Imaging

September 13, 2021 — Lantheus Holdings, Inc. and RefleXion Medical, Inc., today announced a development and ...

Time September 13, 2021
arrow
Subscribe Now