News | Prostate Cancer | January 13, 2020

Nuclear Radiologists 'Outsmart' Prostate Cancer with an Apparently Ineffective Drug

Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital.

Professor Samer Ezziddin, M.D., from Saarland University/Saarland University Hospital. Image courtesy of Saarland University/Thorsten Mohr

 

January 13, 2020 — When a non-scientist tries to imagine a scientist, the image that often arises is one of a somewhat remote, rather idealistic genius sitting alone in their room or laboratory and somehow discovering the most amazing things without every having contact with the 'normal' world. But science is just as much a part of life as any other activity. So it's perhaps not all that surprising to learn that — just like in normal life — intuition can occasionally play a major role in scientific progress.

The importance of intuition was made very clear to Professor Samer Ezziddin and his team at the Department of Nuclear Medicine at Saarland University when they followed up on findings made during their medical research work into the treatment of patients with late-stage prostate cancer. The work centers around two receptors on the surface of the tumour. The first is known as prostate-specific membrane antigen (PSMA), a protein molecule that is very prevalent on the surface of prostate tumors. This surface receptor molecule acts as a gateway and provides a channel through which nuclear radiologists can smuggle radioactive substances into the tumour cells and thus destroy these malignant cells from the inside. The more PSMA molecules on the surface, the more radioactivity can be introduced into the cells without needing to increase the total dosage of radioactive substance being administered to the patient.

The second type of receptor is one that male sex hormones, such as testosterone, are able to dock onto. "Prostate tumours need testosterone like a car needs petrol, explained Ezzidin. So one of the therapies used to treat prostate cancer involves blocking these receptor sites, which effectively stops the cancer from refuelling. "One of the drugs used to block these receptors is enzalutamide and enzalutamide therapy is often very successful for a certain period of time, during which the tumour shrinks," said Ezzidin. "But after a while — which might be several months, perhaps even two years if things go well — the drug stops working and the tumour starts to grow again." Typically, the patient will then be taken off the expensive medication, as there would seem to be no reason to continue to administer it if it's no longer effective.

This is where the intuition of the Homburg research team comes to the fore. What may be of no use for one type of therapy (an ineffective drug) might turn out to be beneficial in another form of cancer therapy. "We suspected, and later on we showed quite definitively, that the density of PSMA sites on the surface of the tumor cell increases when the adrogen receptor to which testosterone attaches is blocked," said Ezzidin. The gut feeling within the research group, combined with the group's clinical observations, strongly suggested that this mechanism would still function in patients for whom the receptor-blocking drug (enzalutamide) was no longer itself therapeutically effective and was therefore no longer being prescribed.

The intuition of the medical research team proved to be spot on. "We were able to prove that administering enzalutamide resulted in a significant increase in the PSMA density on the tumour surface, even though the drug was no longer effective in its original therapeutic sense and was no longer being prescribed for that purpose," explained Ezzidin. Despite the fact that only ten patients were involved the study, he believes that the results are compelling. "After administering enzalutamide, we observed a significant increase in PSMA density on the tumour surface in all patients in the study. This allows us to introduce far more of the radioactive therapeutic agent into the tumour cells and thus irradiate them from the inside with irradiation paths that are down at the micrometre level," said Ezzidin. As a result, PSMA radioligand therapy will be able to treat prostate tumors more efficiently and more selectively than has been possible in the past (see the following report for more details: https://www.eurekalert.org/pub_releases/2019-11/su-pcr112519.php).

"These findings now need to be subjected to further study and corroborated in a future research project," explained Ezzidin. "But we wanted to publish our results as quickly as possible, as our findings may be of help to lots of patients. That's why we decided to first issue this short communication. I expect that even this small-scale study will lead to a drastic change in the therapy management regimens used when treating patients with advanced prostate cancer." And it's very likely that Ezzidin's intuition will once again turn out to be right on the mark.

For more information: www.uni-saarland.de

Related content:

Radiation Therapy Effective in Patients with No Further Treatment Options

Related Content

#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Professor David Sebag-Montefiore (Image courtesy of the University of Leeds)

Professor David Sebag-Montefiore (Image courtesy of the University of Leeds)

News | Radiation Therapy | April 07, 2020
April 7, 2020 — An intern...
Eclipse v16 has received CE mark and is 510(k) pending
News | Proton Therapy | April 06, 2020
April 6, 2020 — Driven by its Intelligent Cancer Care approach in developing new solutions that use advanced technolo
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 New studies use SIRD model to forecast COVID-19 spread; examine patient CT scans to correlate clinical features with mortality

Fig 1. A sample scoring on CT images of a 63-year-old woman from mortality group demonstrated a total score of 63. It was calculated as: for upper zone (A), 3 (consolidation) × 3 (50–75% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) ×1 (< 25% distribution) × 2 (both right and left lungs); for middle zone (B), 3 (consolidation) × 2 (25–50% distribution) × 2 (both right and left lungs) + 2 (ground glass opacity) × 2 (25–50% distribution) × 2 (both right and left lungs); for lower zone (C), 3 (consolidation) × (2 (25–50% distribution of the right lung) + 3 (50–75% distribution of the left lung)) + 2 (ground glass opacity) × (2 (25–50% distribution of the right lung) + 1 (< 25% distribution of the left lung)) Yuan et al, 2020 (CC BY 4.0)

News | Coronavirus (COVID-19) | April 01, 2020
April 1, 2020 — A new study, ...
Women are more likely to be cured of cancer by radiotherapy but the side effects are worse.

Women are more likely to be cured of cancer by radiotherapy but the side effects are worse. Image by Mark Kostich

News | Radiation Therapy | March 30, 2020
March 30, 2020 — Women undergoing radiotherapy for
A new framework from an international team of experts aims to help protect patients and providers, and conserve protective equipment for frontline healthcare workers #COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2
News | Prostate Cancer | March 30, 2020
March 30, 2020 — In the wake of the COVID-19 pan
Novel scanners may open door for prognostic assessment in patients receiving cochlear implants

Iva Speck, MD, explains research showing that novel, fully digital, high-resolution positron emission tomography/computed tomography imaging of small brain stem nuclei can provide clinicians with valuable information concerning the auditory pathway in patients with hearing impairment. The research is featured in The Journal of Nuclear Medicine (read more at http://jnm.snmjournals.org/content/current). Video courtesy of Iva Speck, University Hospital Freiburg, Germany.

News | PET-CT | March 26, 2020
March 26, 2020 — Novel, fully digital, high-resolution...
Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group

Age‐standardized, delay‐adjusted overall cancer incidence rates for 2012 through 2016 are illustrated among males and females by racial/ethnic group. Racial/ethnic groups are mutually exclusive. Data for the non‐Hispanic American Indian/Alaska Native (AI/AN) population are restricted to Indian Health Service Purchased/Referred Care Delivery Area (PRCDA) counties. API indicates Asian/Pacific Islander. Chart courtesy of ACS Journals 

News | Radiation Oncology | March 16, 2020
March 16, 2020 — The Ann...