News | Magnetic Resonance Imaging (MRI) | February 10, 2021

Novel Quantum Sensor Provides New Approach to Early Diagnosis Via Imaging

Scientists develop new quantum sensor that allows detection of 'oxidative stress' in organs during MRI scans, opening doors to early diagnosis of serious illnesses

Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress".

Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress". Graphic courtesy of National Institutes for Quantum and Radiological Science and Technology

February 10, 2021 — Oxygen is essential for human life, but within the body, certain biological environmental conditions can transform oxygen into aggressively reactive molecules called reactive oxygen species (ROS), which can damage DNA, RNA, and proteins. Normally, the body relies on molecules called antioxidants to convert ROS into less dangerous chemical species through a process called reduction. But unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress," which can disrupt normal cellular functions and increase the risk of diseases like cancer, neurodegeneration, kidney dysfunction and others, which are all accompanied by severe inflammation.

Since oxidative stress is associated with various serious diseases, its detection within living organs offers a route to early diagnosis and preventive treatment, and is, thus, a matter of considerable interest to scientists working in the field of biomedicine. Recent international collaboration between the Japanese National Institutes for Quantum and Radiological Science and Technology (QST), Bulgarian Academy of Sciences and Sofia University St. Kliment Ohridski in Bulgaria led to a promising technology for this purpose: a novel quantum sensor. Their work is published in the scientific journal Analytical Chemistry, 2021.

According to lead scientist Rumiana Bakalova, M.D., and her colleague Ichio Aoki, M.D., of QST, "the new sensor is appropriate for the early diagnosis of pathologies accompanied by inflammation, such as infectious diseases, cancer, neurodegeneration, atherosclerosis, diabetes, and kidney dysfunction."

The sensor comprises a quantum dot--semiconductor--core coated with a ring-shaped sugar-like compound called α-cyclodextrin, which in turn is bonded to six redox-sensitive chemical groups called nitroxide derivatives. These components have the advantage of favorable safety profiles, with cyclodextrins being approved for use in food and nitroxide derivatives being considered generally harmless for living beings due to their antioxidant properties.

The nitroxide derivatives cause the sensor to give ON fluorescence signals when in a reduced state and give ON magnetic signals when in an oxidized state. This allows for the detection of oxidative stress, or a reduced cell/tissue capacity, using methods such as magnetic resonance imaging (MRI) and electron paramagnetic imaging (EPR), which can detect magnetic signals. The chemical sensor is also bonded to a compound called triphenylphosphonium, which helps the sensor enter living cells and proceed to the mitochondria, which are the cellular components most often responsible for generating ROS, particularly under pathologic conditions.

To test their novel chemical sensor, the scientists first performed experiments with cultures of normal (healthy) and cancerous colon cells in the lab. For this they used their sensor in the oxidized form. In healthy cells, EPR signals were quenched; but in cancer cells, they stayed strong. This indicates that the sensors were reduced in healthy cells by antioxidants but remained in their oxidized state in the cancer cells, which in turn suggests that the cancerous cells had a higher oxidative capacity.

To further test the sensor, the researchers conducted experiments with both healthy mice and those that had been raised on a high-cholesterol diet for 2 months, which caused them to develop early-stage kidney dysfunction due to persistent inflammation. Compared with the healthy mice, the mice with kidney dysfunction exhibited stronger MRI signals in their kidneys, suggesting that their kidneys were under greater oxidative stress.

This work is in its initial stages and much research is required before these sensors can be ready for medical use. But these findings reveal the potential of such technology. Bakalova noted: "Our sensor is suitable for analyzing even small redox imbalances associated with the overproduction of ROS, via MRI. And while MRI and CT by themselves have been able to diagnose advanced stage kidney damage, they have not yet been able to visualize early stages of dysfunction. The use of our probe could help clinicians identify patients in the early stage of renal damage before they need hemodialysis or kidney transplantation. With further research, our sensor could be the next generation of redox-sensitive contrast probes for early diagnosis of kidney dysfunction, and perhaps, a number of other diseases that are accompanied by inflammation."

For more information: www.qst.go.jp

Related Content

 Nuance Communications, Inc. announced the acquisition of Saykara, Inc., a like-minded startup focused on developing a mobile AI assistant to automate clinical documentation for physicians. The acquisition underscores Nuance's ongoing expansion of market and technical leadership in conversational artificial intelligence (AI) and ambient clinical intelligence (ACI) solutions that reduce clinician burnout, enhance patient experiences, and improve overall health system financial integrity.
News | Artificial Intelligence | February 08, 2021
February 8, 2021 — ...
Phase III clinical trial of men with a clinical suspicion of prostate cancer finds MRI with targeted biopsies to be more accurate at diagnosis and less intrusive than current standard
News | Magnetic Resonance Imaging (MRI) | February 08, 2021
February 8, 2021 — The results of a Phase III randomized clinical trial have shown that when it comes to detecting cl
Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Materialise engineers coordinated the development of a surgical plan and created an on-screen 3D model based on CT-scans.

Feature | Medical 3-D Printing | February 03, 2021
Three-dimensional technologies, developed by Materialise
Bright spots indicate that cancer cells have responded to a one-day challenge with estrogen in this positron emission tomography (PET) scan of a woman with breast cancer. In a small study, researchers at Washington University School of Medicine in St. Louis found that only women whose tumors responded to estrogen challenge benefited from hormone therapy. The findings could help doctors choose the treatments most likely to help their patients. Image courtesy of Farrokh Dehdashti

Bright spots indicate that cancer cells have responded to a one-day challenge with estrogen in this positron emission tomography (PET) scan of a woman with breast cancer. In a small study, researchers at Washington University School of Medicine in St. Louis found that only women whose tumors responded to estrogen challenge benefited from hormone therapy. The findings could help doctors choose the treatments most likely to help their patients. Image courtesy of Farrokh Dehdashti

News | PET Imaging | February 03, 2021
February 3, 2021 — Hormone therapy commonly is given as a targeted treatment for women whose cancer cells carry recep
Volpara Health, a health technology software company whose integrated breast care platform assists in the delivery of personalized patient care, announced the acquisition of CRA Health, LLC, a breast cancer risk assessment company spinoff from Massachusetts General Hospital — a Harvard Medical School teaching hospital.

Getty Images

News | Breast Imaging | February 02, 2021
February 2, 2021 — Volpara Health, a health technology software company whose integrated...
Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB

Kaplan–Meier curves for the high-risk individuals and the ones with low or medium risk according to AI-severity. The threshold to assign individuals into a high-risk group was the 2/3 quantile of the AI-severity score computed for patients of the KB development cohort. a Kaplan–Meier curves were obtained for the 150 leftover KB patients from the development cohort. b Kaplan–Meier curves were obtained for the 135 patients of the IGR validation cohort. p-values for the log-rank test were equal to 4.77e–07 (KB) and 4.00e–12 (IGR). The two terciles used to determine threshold values for low-, medium-, and high-risk groups were equal to 0.187 and 0.375. Diamonds correspond to censoring of patients who were still hospitalized at the time when data ceased to be updated. The bands correspond to the sequence of the 95% confidence intervals of the survival probabilities for each day. KB Kremlin-Bicêtre hospital, IGR Institut Gustave Roussy hospital. Courtesy of Nature Communications.

News | Coronavirus (COVID-19) | February 01, 2021
February 1, 2021 — COVID-19...