News | Artificial Intelligence | May 08, 2019

AI model combines traditional risk factors with breast density and other information from the mammogram to enhance risk prediction

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

May 8, 2019 — Researchers from two major institutions have developed a new tool with advanced artificial intelligence (AI) methods to predict a woman's future risk of breast cancer, according to a new study published in the journal Radiology.1

Identifying women at risk for breast cancer is a critical component of effective early disease detection. However, available models that use factors such as family history and genetics fall far short in predicting an individual woman's likelihood of being diagnosed with the disease.

Breast density — the amount of dense tissue compared to the amount of fatty tissue in the breast on a mammogram — is an independent risk factor for breast cancer that has been added to some models to improve risk assessment. It is based on subjective assessment that can vary across radiologists, so deep learning, a subset of AI in which computers learn by example, has been studied as a way to standardize and automate these measurements.

"There's much more information in a mammogram than just the four categories of breast density," said study lead author Adam Yala, Ph.D. candidate at the Massachusetts Institute of Technology (MIT) in Cambridge, Mass. "By using the deep learning model, we learn subtle cues that are indicative of future cancer."

Yala, in collaboration with Regina Barzilay, Ph.D., an AI expert and professor at MIT, and Constance Lehman, M.D., Ph.D., chief of breast imaging at Massachusetts General Hospital (MGH) in Boston and professor of radiology at Harvard Medical School, recently compared three different risk assessment approaches. The first model relied on traditional risk factors, the second on deep learning that used the mammogram alone, and the third on a hybrid approach that incorporated both the mammogram and traditional risk factors into the deep learning model.

The researchers used almost 90,000 full-resolution screening mammograms from about 40,000 women to train, validate and test the deep learning model. They were able to obtain cancer outcomes through linkage to a regional tumor registry.

The deep learning models yielded substantially improved risk discrimination over the Tyrer-Cuzick model, a current clinical standard that uses breast density in factoring risk. When comparing the hybrid deep learning model against breast density, the researchers found that patients with non-dense breasts and model-assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-assessed low risk. The advantages held across different subgroups of women.

"Unlike traditional models, our deep learning model performs equally well across diverse races, ages and family histories," Barzilay said. "Until now, African-American women were at a distinct disadvantage in having accurate risk assessment of future breast cancer. Our AI model has changed that."

"There's a very large amount of information in a full-resolution mammogram that breast cancer risk models have not been able to use until recently," Yala added. "Using deep learning, we can learn to leverage that information directly from the data and create models that are significantly more accurate across diverse populations."

AI-assisted breast density measurements are already in use for screening mammograms performed at MGH. The researchers are tracking its performance in the clinic while working on refining the ways to communicate risk information to women and their primary care doctors.

"A missing element to support more effective, more personalized screening programs has been risk assessment tools that are easy to implement and that work across the full diversity of women whom we serve," Lehman said. "We are thrilled with our results and eager to work closely with our healthcare systems, our providers and, most importantly, our patients to incorporate this discovery into improved outcomes for all women."

For more information: www.pubs.rsna.org/journal/radiology

 

Reference

1. Yala A., Lehman C., Schuster T., et al. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, May 7, 2019. https://doi.org/10.1148/radiol.2019182716


Related Content

News | Stroke

Dec. 18, 2025 — Brainomix, a provider of AI-powered imaging biomarkers for stroke and lung fibrosis, has announced ...

Time December 24, 2025
arrow
News | Information Technology

Dec. 16, 2025 — McCrae Tech has launched the world’s first health AI orchestrator called Orchestral. It is a health ...

Time December 23, 2025
arrow
News | Women's Health

Dec. 12. 2025 — A new study has found that an individualized approach to breast cancer screening that assesses patients’ ...

Time December 17, 2025
arrow
News | RSNA 2025

Dec. 12, 2025 — At RSNA 2025, United Imaging Intelligence (UII), the AI-focused subsidiary of United Imaging Group ...

Time December 17, 2025
arrow
News | Breast Imaging

Dec. 16, 2025 — Hologic, Inc, a medical technology company dedicated to improving women’s health, recently announced new ...

Time December 16, 2025
arrow
News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
Feature | Radiation Oncology | Kyle Hardner

Genomics has guided personalized cancer treatments for the past two decades. Now, AI biomarkers are expanding the field ...

Time December 09, 2025
arrow
News | FDA

Dec. 8, 2025 — Lunit, a provider of AI for cancer diagnostics and precision oncology, has submitted a 510(k) premarket ...

Time December 08, 2025
arrow
News | Breast Imaging

Dec. 01, 2025 — DeepHealth, a wholly owned subsidiary of RadNet, Inc., has launched the DeepHealth Breast Suite,2 an end ...

Time December 04, 2025
arrow
News | Women's Health

Dec. 1, 2025 — ScreenPoint Medical has completed a commercial agreement making its Transpara breast-imaging AI portfolio ...

Time December 03, 2025
arrow
Subscribe Now