News | Artificial Intelligence | May 08, 2019

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

AI model combines traditional risk factors with breast density and other information from the mammogram to enhance risk prediction

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

May 8, 2019 — Researchers from two major institutions have developed a new tool with advanced artificial intelligence (AI) methods to predict a woman's future risk of breast cancer, according to a new study published in the journal Radiology.1

Identifying women at risk for breast cancer is a critical component of effective early disease detection. However, available models that use factors such as family history and genetics fall far short in predicting an individual woman's likelihood of being diagnosed with the disease.

Breast density — the amount of dense tissue compared to the amount of fatty tissue in the breast on a mammogram — is an independent risk factor for breast cancer that has been added to some models to improve risk assessment. It is based on subjective assessment that can vary across radiologists, so deep learning, a subset of AI in which computers learn by example, has been studied as a way to standardize and automate these measurements.

"There's much more information in a mammogram than just the four categories of breast density," said study lead author Adam Yala, Ph.D. candidate at the Massachusetts Institute of Technology (MIT) in Cambridge, Mass. "By using the deep learning model, we learn subtle cues that are indicative of future cancer."

Yala, in collaboration with Regina Barzilay, Ph.D., an AI expert and professor at MIT, and Constance Lehman, M.D., Ph.D., chief of breast imaging at Massachusetts General Hospital (MGH) in Boston and professor of radiology at Harvard Medical School, recently compared three different risk assessment approaches. The first model relied on traditional risk factors, the second on deep learning that used the mammogram alone, and the third on a hybrid approach that incorporated both the mammogram and traditional risk factors into the deep learning model.

The researchers used almost 90,000 full-resolution screening mammograms from about 40,000 women to train, validate and test the deep learning model. They were able to obtain cancer outcomes through linkage to a regional tumor registry.

The deep learning models yielded substantially improved risk discrimination over the Tyrer-Cuzick model, a current clinical standard that uses breast density in factoring risk. When comparing the hybrid deep learning model against breast density, the researchers found that patients with non-dense breasts and model-assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-assessed low risk. The advantages held across different subgroups of women.

"Unlike traditional models, our deep learning model performs equally well across diverse races, ages and family histories," Barzilay said. "Until now, African-American women were at a distinct disadvantage in having accurate risk assessment of future breast cancer. Our AI model has changed that."

"There's a very large amount of information in a full-resolution mammogram that breast cancer risk models have not been able to use until recently," Yala added. "Using deep learning, we can learn to leverage that information directly from the data and create models that are significantly more accurate across diverse populations."

AI-assisted breast density measurements are already in use for screening mammograms performed at MGH. The researchers are tracking its performance in the clinic while working on refining the ways to communicate risk information to women and their primary care doctors.

"A missing element to support more effective, more personalized screening programs has been risk assessment tools that are easy to implement and that work across the full diversity of women whom we serve," Lehman said. "We are thrilled with our results and eager to work closely with our healthcare systems, our providers and, most importantly, our patients to incorporate this discovery into improved outcomes for all women."

For more information: www.pubs.rsna.org/journal/radiology

 

Reference

1. Yala A., Lehman C., Schuster T., et al. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, May 7, 2019. https://doi.org/10.1148/radiol.2019182716

Related Content

Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
 Recently the versatility of mixed and augmented reality products has come to the forefront of the news, with an Imperial led project at the Imperial College Healthcare NHS Trust. Doctors have been wearing the Microsoft Hololens headsets whilst working on the front lines of the COVID pandemic, to aid them in their care for their patients. IDTechEx have previously researched this market area in its report “Augmented, Mixed and Virtual Reality 2020-2030: Forecasts, Markets and Technologies”, which predicts th

Doctors wearing the Hololens Device. Source: Imperial.ac.uk

News | Artificial Intelligence | May 22, 2020
May 22, 2020 — Recently the versatility of
Phone call and linkage-to-care-based intervention increases mammography uptake among primary care patients at an urban safety-net hospital

Getty Images

News | Mammography | May 22, 2020
May 22, 2020 — Telephone outreach coupled with scheduling assistance significantly increased...
In response to the significant healthcare delivery changes brought on by COVID-19, Varian has launched new capabilities for its Noona software application, a powerful tool designed to engage cancer patients in their care for continuous reporting and symptom monitoring.
News | Radiation Oncology | May 21, 2020
May 21, 2020 — In response to the significant healthcare delivery changes brought on by...