News | Artificial Intelligence | May 08, 2019

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

AI model combines traditional risk factors with breast density and other information from the mammogram to enhance risk prediction

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

May 8, 2019 — Researchers from two major institutions have developed a new tool with advanced artificial intelligence (AI) methods to predict a woman's future risk of breast cancer, according to a new study published in the journal Radiology.1

Identifying women at risk for breast cancer is a critical component of effective early disease detection. However, available models that use factors such as family history and genetics fall far short in predicting an individual woman's likelihood of being diagnosed with the disease.

Breast density — the amount of dense tissue compared to the amount of fatty tissue in the breast on a mammogram — is an independent risk factor for breast cancer that has been added to some models to improve risk assessment. It is based on subjective assessment that can vary across radiologists, so deep learning, a subset of AI in which computers learn by example, has been studied as a way to standardize and automate these measurements.

"There's much more information in a mammogram than just the four categories of breast density," said study lead author Adam Yala, Ph.D. candidate at the Massachusetts Institute of Technology (MIT) in Cambridge, Mass. "By using the deep learning model, we learn subtle cues that are indicative of future cancer."

Yala, in collaboration with Regina Barzilay, Ph.D., an AI expert and professor at MIT, and Constance Lehman, M.D., Ph.D., chief of breast imaging at Massachusetts General Hospital (MGH) in Boston and professor of radiology at Harvard Medical School, recently compared three different risk assessment approaches. The first model relied on traditional risk factors, the second on deep learning that used the mammogram alone, and the third on a hybrid approach that incorporated both the mammogram and traditional risk factors into the deep learning model.

The researchers used almost 90,000 full-resolution screening mammograms from about 40,000 women to train, validate and test the deep learning model. They were able to obtain cancer outcomes through linkage to a regional tumor registry.

The deep learning models yielded substantially improved risk discrimination over the Tyrer-Cuzick model, a current clinical standard that uses breast density in factoring risk. When comparing the hybrid deep learning model against breast density, the researchers found that patients with non-dense breasts and model-assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-assessed low risk. The advantages held across different subgroups of women.

"Unlike traditional models, our deep learning model performs equally well across diverse races, ages and family histories," Barzilay said. "Until now, African-American women were at a distinct disadvantage in having accurate risk assessment of future breast cancer. Our AI model has changed that."

"There's a very large amount of information in a full-resolution mammogram that breast cancer risk models have not been able to use until recently," Yala added. "Using deep learning, we can learn to leverage that information directly from the data and create models that are significantly more accurate across diverse populations."

AI-assisted breast density measurements are already in use for screening mammograms performed at MGH. The researchers are tracking its performance in the clinic while working on refining the ways to communicate risk information to women and their primary care doctors.

"A missing element to support more effective, more personalized screening programs has been risk assessment tools that are easy to implement and that work across the full diversity of women whom we serve," Lehman said. "We are thrilled with our results and eager to work closely with our healthcare systems, our providers and, most importantly, our patients to incorporate this discovery into improved outcomes for all women."

For more information: www.pubs.rsna.org/journal/radiology

 

Reference

1. Yala A., Lehman C., Schuster T., et al. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, May 7, 2019. https://doi.org/10.1148/radiol.2019182716

Related Content

Densitas Wins Major Procurement of Breast Density Software for DIMASOS Breast Screening Trial
News | Breast Density | September 20, 2019
Densitas Inc. announced it has won a procurement of its densitas densityai software for deployment in up to 24 breast...
Numerical simulation with a heterogeneous mouse

Numerical simulation with a heterogeneous mouse. (a) The geometry of the mouse with major organs near the source, and (b) the surface fluence computed with TIM-OS. Image courtesy of Rensselaer Polytechnic Institute.

News | Oncology Diagnostics | September 20, 2019
If researchers could observe drug delivery and its effect on cancer cells in real time, they would be able to tailor...
Screening Mammography Could Benefit Men at High Risk of Breast Cancer
News | Mammography | September 18, 2019
Selective mammography screening can provide potentially lifesaving early detection of breast cancer in men who are at...
Varian Unveils Ethos Solution for Adaptive Radiation Therapy
News | Image Guided Radiation Therapy (IGRT) | September 16, 2019
At the 2019 American Society for Radiation Oncology (ASTRO) annual meeting, being held Sept. 15-18 in Chicago, Varian...
FDA Clears GE Healthcare's Critical Care Suite Chest X-ray AI
Technology | X-Ray | September 12, 2019
GE Healthcare announced the U.S. Food and Drug Administration’s (FDA) 510(k) clearance of Critical Care Suite, a...
iCAD's ProFound AI Wins Best New Radiology Solution in 2019 MedTech Breakthrough Awards
News | Computer-Aided Detection Software | September 09, 2019
iCAD Inc. announced MedTech Breakthrough, an independent organization that recognizes the top companies and solutions...
Imaging Biometrics and Medical College of Wisconsin Awarded NIH Grant
News | Neuro Imaging | September 09, 2019
Imaging Biometrics LLC (IB), in collaboration with the Medical College of Wisconsin (MCW), has received a $2.75 million...
A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images

A smart algorithm has been trained on a neural network to recognize the appearance of breast cancer in MR images. The algorithm, described at the SBI/ACR Breast Imaging Symposium, used deep learning, a form of machine learning, which is a type of artificial intelligence. Image courtesy of Sarah Eskreis-Winkler, M.D.

Feature | Society of Breast Imaging (SBI) | September 06, 2019 | By Greg Freiherr
The use of smart algorithms has the potential to make healthcare more efficient.
Philips and Fujifilm booths at SIIM 2019.

Philips and Fujifilm booths at SIIM 2019.

Feature | SIIM | September 06, 2019 | By Greg Freiherr
Pragmatism from cybersecurity to enterprise imaging was in vogue at the 2019 meeting of the Society of Imaging Inform
Sudhen Desai, M.D.

Sudhen Desai, M.D.

Feature | Pediatric Imaging | September 04, 2019 | By Jeff Zagoudis
Burnout has become a popular buzzword in today’s business world, meant to describe prolonged periods of stress in the