News | Artificial Intelligence | May 08, 2019

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

AI model combines traditional risk factors with breast density and other information from the mammogram to enhance risk prediction

Novel Artificial Intelligence Method Predicts Future Risk of Breast Cancer

May 8, 2019 — Researchers from two major institutions have developed a new tool with advanced artificial intelligence (AI) methods to predict a woman's future risk of breast cancer, according to a new study published in the journal Radiology.1

Identifying women at risk for breast cancer is a critical component of effective early disease detection. However, available models that use factors such as family history and genetics fall far short in predicting an individual woman's likelihood of being diagnosed with the disease.

Breast density — the amount of dense tissue compared to the amount of fatty tissue in the breast on a mammogram — is an independent risk factor for breast cancer that has been added to some models to improve risk assessment. It is based on subjective assessment that can vary across radiologists, so deep learning, a subset of AI in which computers learn by example, has been studied as a way to standardize and automate these measurements.

"There's much more information in a mammogram than just the four categories of breast density," said study lead author Adam Yala, Ph.D. candidate at the Massachusetts Institute of Technology (MIT) in Cambridge, Mass. "By using the deep learning model, we learn subtle cues that are indicative of future cancer."

Yala, in collaboration with Regina Barzilay, Ph.D., an AI expert and professor at MIT, and Constance Lehman, M.D., Ph.D., chief of breast imaging at Massachusetts General Hospital (MGH) in Boston and professor of radiology at Harvard Medical School, recently compared three different risk assessment approaches. The first model relied on traditional risk factors, the second on deep learning that used the mammogram alone, and the third on a hybrid approach that incorporated both the mammogram and traditional risk factors into the deep learning model.

The researchers used almost 90,000 full-resolution screening mammograms from about 40,000 women to train, validate and test the deep learning model. They were able to obtain cancer outcomes through linkage to a regional tumor registry.

The deep learning models yielded substantially improved risk discrimination over the Tyrer-Cuzick model, a current clinical standard that uses breast density in factoring risk. When comparing the hybrid deep learning model against breast density, the researchers found that patients with non-dense breasts and model-assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-assessed low risk. The advantages held across different subgroups of women.

"Unlike traditional models, our deep learning model performs equally well across diverse races, ages and family histories," Barzilay said. "Until now, African-American women were at a distinct disadvantage in having accurate risk assessment of future breast cancer. Our AI model has changed that."

"There's a very large amount of information in a full-resolution mammogram that breast cancer risk models have not been able to use until recently," Yala added. "Using deep learning, we can learn to leverage that information directly from the data and create models that are significantly more accurate across diverse populations."

AI-assisted breast density measurements are already in use for screening mammograms performed at MGH. The researchers are tracking its performance in the clinic while working on refining the ways to communicate risk information to women and their primary care doctors.

"A missing element to support more effective, more personalized screening programs has been risk assessment tools that are easy to implement and that work across the full diversity of women whom we serve," Lehman said. "We are thrilled with our results and eager to work closely with our healthcare systems, our providers and, most importantly, our patients to incorporate this discovery into improved outcomes for all women."

For more information: www.pubs.rsna.org/journal/radiology

 

Reference

1. Yala A., Lehman C., Schuster T., et al. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology, May 7, 2019. https://doi.org/10.1148/radiol.2019182716

Related Content

This is an example of 3-D ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

This is an example of TriVu ultrasound imaging on a breast, designed to help increase efficiency and diagnostic accuracy in any practice. Image courtesy of Hologic.

Feature | Breast Imaging | September 15, 2021 | By Jennifer Meade
The...
While the Mammography Quality Standards Act (MQSA) and the introduction of EQUIP (Enhancing Quality Using the Inspection Program) have been successful in standardizing and enhancing mammographic imaging quality, inadequate breast positioning can dramatically impact the ability of radiologists and technicians to quickly and accurately detect breast cancer and potentially malignant lesions in their patients

Getty Images

Feature | Mammography | September 15, 2021 | By Christopher Austin, M.D. and Randy D. Hicks, M.D., MBA
Cloud services have been utilized within healthcare organizations for more than a decade. Now with the growth of artificial intelligence (AI) it is very common to see organizations adopting cloud services.

Getty Images

Feature | Information Technology | September 14, 2021 | By Jef Williams
As with all imaging technologies, COVID-19 is expected to continue to negatively impact the market.

Courtesy of Grand View Research

Feature | Magnetic Resonance Imaging (MRI) | September 14, 2021 | By Melinda Taschetta-Millane
Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Feature | Radiology Imaging | September 14, 2021 | By Brendon McHugh
Us2.ai, a Singapore-based medtech firm backed by Sequoia India and EDBI, has received U.S. Food and Drug Administration (FDA) clearance for Us2.v1, a completely automated AI decision support tool for cardiac ultrasound.
News | Cardiovascular Ultrasound | September 14, 2021
September 14, 2021 – Us2.ai, a Singapore-based medtech firm backed by Sequoia India and EDBI, has received U.S.
Plan to attend RSNA21 at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | September 13, 2021
September 13, 2021 — The Radiological Society of North America (RSNA) today announced highlights of the Technical Exh
According to ARRS’ American Journal of Roentgenology (AJR), immediately reading screening mammograms during the coronavirus disease (COVID-19) pandemic promises a new and improved paradigm—reducing care disparities, while increasing the speed of diagnostic workup.

Flow Chart of Patient Selection

News | Breast Imaging | September 09, 2021
September 9, 202