NIH Researchers Discover New Method to Label Cells for MRI Tracking

March 9, 2012 — Researchers have developed a method to label transplanted cells so they can be tracked by magnetic resonance imaging (MRI). In the future, as cell therapies become a more integral part of regenerative medicine and tumor treatment, there could be increased need to measure how many transplanted immune or stem cells reach their target.

A team combined three U.S. Food and Drug Administration (FDA)-approved drugs to form a complex that, when incubated in transplant cells, labeled nearly 100 percent of those cells for MRI in animal models.

"Less than 3 percent of intravenous transplanted cells get to their target. This brings up questions of cell dose, multiple doses, and dose timing and how to make cell therapy approaches more effective," said Joseph A. Frank, M.D., chief of the National Institute of Health (NIH) Clinical Center (CC) for radiology and imaging sciences laboratory of diagnostic radiology research said.

Cell death and distribution to other areas prevent most treatment cells from reaching the intended site. By using MRI to track cell arrival or homing to the desired site, researchers can compare dosage amounts and frequency for the most beneficial treatment.

In clinical practice, cell tracking is done with introduction of a radioisotope or implantation of an easily located reporter gene, but short half-life of isotopes, modification to the cell genome, and possibility of other toxicity limit these methods.

Frank and his team explored the use of ferumoxytol, a drug with iron oxide and magnetic properties that allow for MRI tracking. Two other drugs — heparin (with a strong negative charge) and protamine (with a strong positive charge) — allow for successful and smooth incorporation into the transplant cell. Ferumoxytol, heparin, and protamine form a complex through electrostatic interaction that, when incubated in transplant cells, label them for MRI tracking.

The complex contains concentrations of each drug substantially below recommended clinical doses and biodegrades safely through the iron metabolic pathway. Since these three drugs are used clinically, extensive safety testing should not be necessary and investigative new drug application evaluation should be shortened.

"The discovery of a technique to track cells developed for potential clinical use is one of many examples of the cutting-edge research at the NIH Clinical Center, which works to rapidly translate scientific discovery to clinical practice," said CC director John I. Gallin, M.D.

The technology, pending regulatory agency review, will be first tested in humans in an ongoing trial (NCT01172964) at the City of Hope Medical Center in Duarte, Calif. Supported by the California Institute of Regenerative Medicine, the study is testing the transplant of genetically engineered neural stem cells on patients with a type of brain tumor.

Researchers from the Henry Ford Hospital in Detroit, Mich., and the National Institute of Biomedical Imaging and Bioengineering, part of the NIH, also contributed to the Nature Medicine article.

For more information: clinicalcenter.nih.gov


Related Content

News | PET Imaging

April 24, 2024 — A new study from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare ...

Time April 24, 2024
arrow
News | Radiology Business

April 23, 2024 — A diverse writing group—lead by authors at the University of Toronto—have developed an approach for ...

Time April 23, 2024
arrow
News | FDA

April 18, 2024 — Lumicell, Inc., a privately held company focused on developing innovative fluorescence-guided imaging ...

Time April 18, 2024
arrow
News | Radiology Business

April 17, 2024 — VISTA.AI announced the appointment of Daniel Hawkins as President and CEO. The company is pioneering AI ...

Time April 17, 2024
arrow
News | Radiopharmaceuticals and Tracers

April 5, 2024 — RLS Radiopharmacies, America’s only Joint Commission-accredited radiopharmacy network, today announced ...

Time April 05, 2024
arrow
News | Radiology Business

April 4, 2024 — FUJIFILM Healthcare Americas Corporation, a leading provider of diagnostic and enterprise imaging ...

Time April 04, 2024
arrow
News | Molecular Imaging

March 29, 2024 — Magnetic resonance imaging (MRI) is a cornerstone in the landscape of medical diagnostics, celebrated ...

Time March 29, 2024
arrow
News | FDA

March 27, 2024 — SyntheticMR announced that its next-generation imaging solution, SyMRI 3D, has received FDA 510(k) ...

Time March 27, 2024
arrow
News | Breast Imaging

March 8, 2024 — Lumicell, Inc., a privately held company focused on innovative fluorescence-guided imaging technologies ...

Time March 08, 2024
arrow
News | Artificial Intelligence

March 1, 2024 — Royal Philips, a global leader in health technology, and magnetic resonance imaging (MRI) software ...

Time March 01, 2024
arrow
Subscribe Now