News | March 09, 2012

NIH Researchers Discover New Method to Label Cells for MRI Tracking

March 9, 2012 — Researchers have developed a method to label transplanted cells so they can be tracked by magnetic resonance imaging (MRI). In the future, as cell therapies become a more integral part of regenerative medicine and tumor treatment, there could be increased need to measure how many transplanted immune or stem cells reach their target.

A team combined three U.S. Food and Drug Administration (FDA)-approved drugs to form a complex that, when incubated in transplant cells, labeled nearly 100 percent of those cells for MRI in animal models.

"Less than 3 percent of intravenous transplanted cells get to their target. This brings up questions of cell dose, multiple doses, and dose timing and how to make cell therapy approaches more effective," said Joseph A. Frank, M.D., chief of the National Institute of Health (NIH) Clinical Center (CC) for radiology and imaging sciences laboratory of diagnostic radiology research said.

Cell death and distribution to other areas prevent most treatment cells from reaching the intended site. By using MRI to track cell arrival or homing to the desired site, researchers can compare dosage amounts and frequency for the most beneficial treatment.

In clinical practice, cell tracking is done with introduction of a radioisotope or implantation of an easily located reporter gene, but short half-life of isotopes, modification to the cell genome, and possibility of other toxicity limit these methods.

Frank and his team explored the use of ferumoxytol, a drug with iron oxide and magnetic properties that allow for MRI tracking. Two other drugs — heparin (with a strong negative charge) and protamine (with a strong positive charge) — allow for successful and smooth incorporation into the transplant cell. Ferumoxytol, heparin, and protamine form a complex through electrostatic interaction that, when incubated in transplant cells, label them for MRI tracking.

The complex contains concentrations of each drug substantially below recommended clinical doses and biodegrades safely through the iron metabolic pathway. Since these three drugs are used clinically, extensive safety testing should not be necessary and investigative new drug application evaluation should be shortened.

"The discovery of a technique to track cells developed for potential clinical use is one of many examples of the cutting-edge research at the NIH Clinical Center, which works to rapidly translate scientific discovery to clinical practice," said CC director John I. Gallin, M.D.

The technology, pending regulatory agency review, will be first tested in humans in an ongoing trial (NCT01172964) at the City of Hope Medical Center in Duarte, Calif. Supported by the California Institute of Regenerative Medicine, the study is testing the transplant of genetically engineered neural stem cells on patients with a type of brain tumor.

Researchers from the Henry Ford Hospital in Detroit, Mich., and the National Institute of Biomedical Imaging and Bioengineering, part of the NIH, also contributed to the Nature Medicine article.

For more information: clinicalcenter.nih.gov

Related Content

Houston Methodist Hospital Enters Multi-Year Technology and Research Agreement With Siemens Healthineers
News | Imaging | August 17, 2017
Houston Methodist Hospital and Siemens Healthineers have entered into a multi-year agreement to bring cutting-edge...
Carestream Launches MR Brain Perfusion and Diffusion Modules for Vue PACS
Technology | Advanced Visualization | August 16, 2017
Carestream Health recently introduced new MR (magnetic resonance) Brain Perfusion and MR Brain Diffusion modules that...
Study Demonstrates First Human Application of Novel PET Tracer for Prostate Cancer

Transaxial 11Csarcosine hybrid PET/CT showed a (triangulated) adenocarcinoma in the transition zone of the anterior right prostate gland on PET (A), CT (B), and a separately obtained T2?weighted MR sequence (C) with resulting PET/MRI registration (D). Image courtesy of M. Piert et al., University of Michigan, Ann Arbor, Mich.

News | Radiopharmaceuticals and Tracers | August 16, 2017
In the featured translational article in the August issue of The Journal of Nuclear Medicine, researchers at the...
ISMRM Issues Guidelines for MRI Gadolinium Contrast Agents
News | Contrast Media | August 15, 2017
The International Society for Magnetic Resonance in Medicine (ISMRM) has provided new guidance in the use of contrast...
MRI Reveals Striking Brain Differences in People with Genetic Autism

Example images for a control participant , a deletion carrier, and a duplication carrier. In the sagittal image of the deletion carrier, the thick corpus callosum, dens and craniocervical abnormality, and cerebellar ectopia are shown. For the duplication carrier, the sagittal image shows the thin corpus callosum and the axial image shows the increased ventricle size and decreased white matter volume. Image courtesy of the Radiological Society of North America (RSNA).

News | Neuro Imaging | August 09, 2017
August 9, 2017 — In the first major study of its kind, researchers using magnetic...
GE Healthcare's Signa Premier MRI Receives FDA 510(k) Clearance
Technology | Magnetic Resonance Imaging (MRI) | August 04, 2017
GE Healthcare announced Signa Premier, a new wide bore 3.0T magnetic resonance imaging (MRI) system, is now available...
brain with chronic traumatic injury
News | Magnetic Resonance Imaging (MRI) | August 02, 2017
Fighters are exposed to repeated mild traumatic brain injury (mTBI), which has been associated with neurodegenerative...
News | Image Guided Radiation Therapy (IGRT) | July 31, 2017
Elekta’s magnetic resonance radiation therapy (MR/RT) system will be the subject of 21 abstracts at the 59th American...
Overlay Init