A University of Waterloo engineer’s MRI invention reveals better than many existing imaging technologies how COVID-19 can change the human brain.

June 14, 2023 — A University of Waterloo engineer’s MRI invention reveals better than many existing imaging technologies how COVID-19 can change the human brain. 

The new imaging technique known as correlated diffusion imaging(CDI) was developed by systems design engineering professor Alexander Wong and recently used in a groundbreaking study by scientists at Baycrest’s Rotman Research Institute and Sunnybrook Hospital in Toronto. 

“Some may think COVID-19 affects just the lungs,” Dr. Wong said. “What was found is that this new MRI technique that we created is very good at identifying changes to the brain due to COVID-19. COVID-19 changes the white matter in the brain.” 

Wong, a Canada Research Chair in Artificial Intelligence and Medical Imaging, had previously developed CDI in a successful search for a better imaging measure for detecting cancer. CDI is a new form of MRI that can better highlight the differences in the way water molecules move in tissue by capturing and mixing MRI signals at different gradient pulse strengths and timings. 

Researchers at Rotman, a world-renowned center for the study of brain function, saw Wong’s imaging discovery and thought it could likely also be used to identify changes to the brain due to COVID-19. Subsequent tests proved that theory right. The CDI imaging of frontal-lobe white matter revealed a less restricted diffusion of water molecules in COVID-19 patients. At the same time, it showed a more restricted diffusion of water molecules in the cerebellum of patients with COVID-19. 

Wong highlights that the two regions of the brain react differently to COVID-19 and points to two key findings from the research. First, the human cerebellum might be more vulnerable to COVID-19 infections. Second, the study reinforces the idea that COVID-19 infections can lead to changes in the brain.  

Not only is the Rotman study one of the few to have shown COVID-19’s effects on the brain, but it is the first to report diffusion abnormalities in the white matter of the cerebellum. Although the study was designed to show changes, rather than specific damage, to the brain from COVID-19, its final report does discuss potential sources of such changes and many link to disease and damage. 

In response, Wong suggests future tests could focus on whether COVID-19 actually damages brain tissue. Additional studies could also determine if COVID-19 can change the brain’s grey matter.  

“Hopefully, this research can lead to better diagnoses and treatments for COVID-19 patients,” Wong said. “And that could just be the beginning for CDI as it might be used to understand degenerative processes in other diseases such as Alzheimer’s or to detect breast or prostate cancers.” 

The study, Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: Application in COVID-19, which involves Wong and his student Hayden Gunraj as co-authors, is published in the journal Human Brain Mapping. 

For more information: https://uwaterloo.ca/ 

 

Related content: 

MRI Reveals Significant Brain Abnormalities Post-COVID 

MRI Innovation Makes Cancerous Tissue Light Up and Easier to See 

Long COVID Syndrome in Children and Teens 

Long COVID Implications: Increased Health Care Use After Infection With SARS-Cov-2 

Lasting Lung Damage Seen in Children and Teens after COVID  

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging   

COVID-19 Fallout May Lead to More Cancer Deaths    

Kawasaki-like Inflammatory Disease Affects Children With COVID-19    

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets    

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4    

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents    

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination    

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine    

Case Study Describes One of the First U.S. Cases of MIS-C    

NIH-funded Project Wants to Identify Children at Risk for MIS-C From COVID-19 


Related Content

News | Computed Tomography (CT)

A new study shows large increases in the use of computed tomography (CT) scans of the head in emergency departments ...

Time December 05, 2025
arrow
Feature | Uzay Emir and Stephen Sawiak

Healthcare has reached a critical juncture. The World Economic Forum estimates that global medical costs will see double ...

Time December 04, 2025
arrow
News | X-Ray

Dec. 1, 2025 – Zwanger-Pesiri Radiology, one of the most respected and technologically advanced outpatient radiology ...

Time December 03, 2025
arrow
News | Interventional Radiology

Dec. 1, 2025 — GE HealthCare has unveiled the Allia Moveo,1 an image guiding solution designed to enhance mobility and ...

Time December 02, 2025
arrow
News | Archive Cloud Storage

Nov. 30, 2025 — Gradient Health, Inc. has released Atlas 2, a major upgrade to its self-service medical imaging data ...

Time December 01, 2025
arrow
News | Artificial Intelligence

Nov. 24, 2025 — Siemens Healthineers is launching artificial intelligence-enabled services to help healthcare providers ...

Time November 24, 2025
arrow
News | Artificial Intelligence

Nov. 20, 2025 — Aidoc has announced a collaboration with AdventHealth to launch one of the largest imaging AI ...

Time November 21, 2025
arrow
News | Advanced Visualization

Nov. 20, 2025 — Avatar Medical and Barco have launched Eonis Vision, marking a new evolution in how medical imaging is ...

Time November 20, 2025
arrow
News | Neuro Imaging

Nov. 19, 2025 — Royal Philips has announced an extended partnership with Cortechs.ai. Together, the companies will ...

Time November 19, 2025
arrow
News | Radiology Business

Nov. 13, 2025 — Covera Health recently announced that Advanced Radiology Services (ARS) has joined its national Quality ...

Time November 17, 2025
arrow
Subscribe Now