A University of Waterloo engineer’s MRI invention reveals better than many existing imaging technologies how COVID-19 can change the human brain.

June 14, 2023 — A University of Waterloo engineer’s MRI invention reveals better than many existing imaging technologies how COVID-19 can change the human brain. 

The new imaging technique known as correlated diffusion imaging(CDI) was developed by systems design engineering professor Alexander Wong and recently used in a groundbreaking study by scientists at Baycrest’s Rotman Research Institute and Sunnybrook Hospital in Toronto. 

“Some may think COVID-19 affects just the lungs,” Dr. Wong said. “What was found is that this new MRI technique that we created is very good at identifying changes to the brain due to COVID-19. COVID-19 changes the white matter in the brain.” 

Wong, a Canada Research Chair in Artificial Intelligence and Medical Imaging, had previously developed CDI in a successful search for a better imaging measure for detecting cancer. CDI is a new form of MRI that can better highlight the differences in the way water molecules move in tissue by capturing and mixing MRI signals at different gradient pulse strengths and timings. 

Researchers at Rotman, a world-renowned center for the study of brain function, saw Wong’s imaging discovery and thought it could likely also be used to identify changes to the brain due to COVID-19. Subsequent tests proved that theory right. The CDI imaging of frontal-lobe white matter revealed a less restricted diffusion of water molecules in COVID-19 patients. At the same time, it showed a more restricted diffusion of water molecules in the cerebellum of patients with COVID-19. 

Wong highlights that the two regions of the brain react differently to COVID-19 and points to two key findings from the research. First, the human cerebellum might be more vulnerable to COVID-19 infections. Second, the study reinforces the idea that COVID-19 infections can lead to changes in the brain.  

Not only is the Rotman study one of the few to have shown COVID-19’s effects on the brain, but it is the first to report diffusion abnormalities in the white matter of the cerebellum. Although the study was designed to show changes, rather than specific damage, to the brain from COVID-19, its final report does discuss potential sources of such changes and many link to disease and damage. 

In response, Wong suggests future tests could focus on whether COVID-19 actually damages brain tissue. Additional studies could also determine if COVID-19 can change the brain’s grey matter.  

“Hopefully, this research can lead to better diagnoses and treatments for COVID-19 patients,” Wong said. “And that could just be the beginning for CDI as it might be used to understand degenerative processes in other diseases such as Alzheimer’s or to detect breast or prostate cancers.” 

The study, Feasibility of diffusion-tensor and correlated diffusion imaging for studying white-matter microstructural abnormalities: Application in COVID-19, which involves Wong and his student Hayden Gunraj as co-authors, is published in the journal Human Brain Mapping. 

For more information: https://uwaterloo.ca/ 

 

Related content: 

MRI Reveals Significant Brain Abnormalities Post-COVID 

MRI Innovation Makes Cancerous Tissue Light Up and Easier to See 

Long COVID Syndrome in Children and Teens 

Long COVID Implications: Increased Health Care Use After Infection With SARS-Cov-2 

Lasting Lung Damage Seen in Children and Teens after COVID  

PHOTO GALLERY: How COVID-19 Appears on Medical Imaging   

COVID-19 Fallout May Lead to More Cancer Deaths    

Kawasaki-like Inflammatory Disease Affects Children With COVID-19    

FDA Adds Myocarditis Warning to COVID mRNA Vaccine Clinician Fact Sheets    

CMS Now Requires COVID-19 Vaccinations for Healthcare Workers by January 4    

Cardiac MRI of Myocarditis After COVID-19 Vaccination in Adolescents    

Small Number of Patients Have Myocarditis-like Illness After COVID-19 Vaccination    

Overview of Myocarditis Cases Caused by the COVID-19 Vaccine    

Case Study Describes One of the First U.S. Cases of MIS-C    

NIH-funded Project Wants to Identify Children at Risk for MIS-C From COVID-19 


Related Content

News | Radiology Business

July 25, 2024 — Immunis, Inc., a clinical-stage biotech developing groundbreaking secretome therapeutics for age and ...

Time July 25, 2024
arrow
News | Radiopharmaceuticals and Tracers

July 25, 2024 — NorthStar Medical Radioisotopes, LLC and BWXT Medical Ltd., a subsidiary of BWX Technologies, Inc ...

Time July 25, 2024
arrow
News | PET-CT

July 25, 2024 — Positron Corporation, a leading molecular imaging medical device company offering PET & PET-CT imaging ...

Time July 25, 2024
arrow
News | RSNA

July 23, 2024 — Professional registration is open for RSNA 2024, the world’s largest radiology forum. This year’s theme ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 23, 2024 — Researchers at the National Institutes of Health (NIH) found that an artificial intelligence (AI) model ...

Time July 23, 2024
arrow
News | Radiology Imaging

July 23, 2024 — EMVision, an Australian medical device company focused on the development and commercialization of ...

Time July 23, 2024
arrow
News | Artificial Intelligence

July 22, 2024 — Healthcare artificial intelligence (AI) systems provider, Qure.ai, has announced its receipt of a Class ...

Time July 22, 2024
arrow
News | Radiology Business

July 19, 2024 — GE HealthCare announced it has entered into an agreement to acquire Intelligent Ultrasound Group PLC’s ...

Time July 19, 2024
arrow
News | Radiology Education

July 19, 2024 — Core tactics to address the current medical imaging and radiation therapy workforce shortage and build ...

Time July 19, 2024
arrow
News | Computed Tomography (CT)

July 18, 2024 — NeuroLogica Corp, a subsidiary of Samsung Electronics Co. Ltd., announced its latest configuration of ...

Time July 18, 2024
arrow
Subscribe Now