News | Radiation Therapy | August 26, 2019

Moffitt Researchers Develop Model to Personalize Breast Cancer Radiation Treatment

The genomically-adjusted radiation dose (GARD) can predict risk of local tumor recurrence and optimize radiation dose

Moffitt Researchers Develop Model to Personalize Breast Cancer Radiation Treatment

August 26, 2019 — A personalized approach to cancer treatment has become more common over the last several decades, with numerous targeted drugs approved to treat particular tumor types with specific mutations or patterns. However, this same personalized strategy has not translated to radiation therapy, and a one-size-fits-all approach for most patients is still common practice. Moffitt Cancer Center researchers hope to change this mindset for radiation treatment with the development of a genomically-based model that can optimize and personalize a radiation dose to match an individual patient’s needs.

Radiation therapy is part of the standard treatment approach for breast cancer, but the dose administered to most patients is largely the same. Currently, clinical studies are being conducted to determine the benefits and risks of omitting radiation treatment in certain patients with breast cancer who are at a low risk of local disease recurrence. However, according to Javier Torres-Roca, M.D., senior member of Moffitt’s Department of Radiation Oncology, “a true genomic approach to personalize radiotherapy dose has not yet been undertaken.”

Previously, Torres-Roca and his team developed and validated a radiation sensitivity index (RSI) to predict the radiation sensitivity of tumors based on the patterns of 10 genes. However, they wanted to further develop the use of the RSI to more accurately determine the appropriate radiation dose for individual patients. The research team combined the RSI with a model that is used to determine the effect of radiation dose on tumor and normal tissues to create a new radiation dose determining method called genomically-adjusted radiation dose (GARD).

“GARD is the first opportunity for a genomically-driven personalized approach in radiation oncology, and is a research priority for the field,” explained Torres-Roca. “Our research has found that GARD values are lower for those tumors that are resistant to radiation and higher for those tumors that are sensitive to radiation treatment.”

In a new study published this month in EBioMedicine, Moffitt researchers validated the use of the GARD model in two separate groups of triple-negative breast cancer patients treated with radiation therapy from Europe (N=58) and the Total Cancer Care program at Moffitt (N=55).1 They demonstrated that GARD values were associated with the risk of breast cancer recurring locally. The researchers also used GARD to calculate an individualized radiation dose for each breast cancer patient in the group of patients from Moffitt. They found that the range for biological optimal radiation dose in triple negative breast cancer ranged from 30 to 76 Gy, and that the current standard to deliver 60 Gy to all patients could be overdosing a significant number of patients.

The researchers are now planning a clinical trial to be initiated at Moffitt where the radiation dose for breast cancer patients will be selected based on this model. They hope that the continued study of the GARD model and its implementation into practice will benefit patients by allowing a personalized approach to radiation treatment and will minimize the risks of additional radiation exposure. 

“Our analyses provide the first proposed range for optimal radiotherapy dose at an individual patient level in triple-negative breast cancer and proposes a significant number of patients can be treated with lower doses of radiotherapy while still maintaining high levels of local control,” said Kamran Ahmed, M.D., assistant member of the Department of Radiation Oncology at Moffitt and lead author of the study.

The study was supported by funds from the Morton Plant Mease Foundation.

For more information: www.ebiomedicine.com

 

Related Content

VIDEO: Personalizing Radiotherapy Using Genomic Markers of Radiosensitivity

Researchers Develop First Genetic Test Predicting Tumor Sensitivity to Radiotherapy

Radiation Therapy Treatment Advances

 

Reference

1. Ahmed K.A., Liveringhouse C.L., Mills M.N., et al. Utilizing the genomically adjusted radiation dose (GARD) to personalize adjuvant radiotherapy in triple negative breast cancer management. EBioMedicine, published online Aug. 12, 2019. https://doi.org/10.1016/j.ebiom.2019.08.019

Related Content

According to the new market research report "Radiation Dose Management Market by Products & Services (Standalone Solutions, Integrated Solutions, Services), Modality (Computed Tomography, Nuclear Medicine), Application (Oncology, Cardiology, Orthopedic), End User (Hospitals) - Global Forecast to 2025", published by MarketsandMarkets, the radiation dose management market is projected to reach USD 422.65 million by 2025 from USD 220.22 million in 2020, at a CAGR of 13.9%.

Courtesy of MarketsandMarkets Research

News | Radiation Dose Management | August 03, 2020
August 3, 2020 — According to the new market research report "...
Hologic, Inc. launched the Back to Screening campaign encouraging women to schedule their annual mammograms now that healthcare facilities across the nation are re-opening their doors following closures due to the COVID-19 pandemic.

Nine-time GRAMMY Award winner and breast cancer survivor Sheryl Crow has served as the spokesperson for Hologic’s Genius 3D Mammography exam for nearly five years.

News | Breast Imaging | August 03, 2020
August 3, 2020 — Hologic, Inc. launched the Back to Screening campaign encouraging women to schedule their ann
Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly welcomes Siemens Healthineers AG’s acquisition of a 100 percent stake in Varian Medical Systems, Inc., a U.S. company active in the area of cancer research and therapy.

Getty Images

News | Radiology Business | August 03, 2020
August 3, 2020 — Siemens AG is continuing to rigorously execute its Vision 2020+ strategy and therefore expressly wel
JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

Table 1. JAMA Oncol. Published online  July 30, 2020. doi:10.1001/jamaoncol.2020.2783

News | Coronavirus (COVID-19) | July 31, 2020
July 31, 2020 — An article published in JAMA...
Older Americans may be receiving cancer screenings not recommended by the U.S. Preventive Services Task Force, according to Penn State College of Medicine researchers.

Getty Images

News | Radiology Imaging | July 31, 2020
July 31, 2020 — Older Americans may be receiving cancer screenings not recommended by the...
It covers every major modality, including breast imaging/mammography, fixed and portable C-arms (cath, IR/angio, hybrid, OR), CT, MRI, nuclear medicine, radiographic fluoroscopy, ultrasound and X-ray
News | Radiology Imaging | July 29, 2020
July 29, 2020 — IMV Medical Information, part of Scien...
It has been estimated that the overwhelming focus on COVID-19 could cause up to 35,000 excess cancer deaths in the UK during the next 12 months, and  Zegami, the Oxford University data visualization spin-out which has worked on several projects focused on the detection, diagnosis, or management of cancer, is calling for greater use of technology to speed up the process of diagnosis and treatment.

Getty Images

News | Radiation Oncology | July 29, 2020
July 29, 2020 — It has been estimated that the overwhelming focus on...
Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

Prostate biopsy with cancer probability (blue is low, red is high). This case was originally diagnosed as benign but changed to cancer upon further review. The AI accurately detected cancer in this tricky case. Image courtesy of Ibex Medical Analytics

News | Prostate Cancer | July 28, 2020
July 28, 2020 — A study published in