News | Neuro Imaging | January 11, 2019

Machine Learning Uncovers New Insights Into Human Brain Through fMRI

Study uses non-invasive neuroimaging data to reveal cellular properties of different brain regions, providing a new avenue to examine neurological disorders

Machine Learning Uncovers New Insights Into Human Brain Through fMRI

January 11, 2019 — An interdisciplinary research team led by scientists from the National University of Singapore (NUS) has successfully employed machine learning to uncover new insights into the cellular architecture of the human brain.

The team demonstrated an approach that automatically estimates parameters of the brain using data collected from functional magnetic resonance imaging (fMRI), enabling neuroscientists to infer the cellular properties of different brain regions without probing the brain using surgical means. This approach could potentially be used to assess treatment of neurological disorders, and to develop new therapies.

“The underlying pathways of many diseases occur at the cellular level, and many pharmaceuticals operate at the microscale level. To know what really happens at the innermost levels of the human brain, it is crucial for us to develop methods that can delve into the depths of the brain non-invasively,” said team leader Assistant Prof. Thomas Yeo, who is from the Singapore Institute for Neurotechnology (SINAPSE) at NUS, and the A*STAR-NUS Clinical Imaging Research Centre (CIRC).

The new study, conducted in collaboration with researchers from the Netherlands and Spain was first reported online in scientific journal Science Advances on Jan. 9, 2019.1

 

Unravelling the complexity of the human brain

The brain is the most intricate organ of the human body, and it is made up of 100 billion nerve cells that are in turn connected to around 1,000 others. Any damage or disease affecting even the smallest part of the brain could lead to severe impairment.

Currently, most human brain studies are limited to non-invasive approaches, such as magnetic resonance imaging (MRI). This limits the examination of the human brain at the cellular level, which may offer novel insights into the development, and potential treatment, of various neurological diseases.

Different research teams around the world have harnessed biophysical modelling to bridge this gap between non-invasive imaging and cellular understanding of the human brain. The biophysical brain models could be used to simulate brain activity, enabling neuroscientists to gain insights into the brain. However, many of these models rely on overly simplistic assumptions, such as all brain regions have the same cellular properties, which scientists have known to be false for more than 100 years.

 

Constructing virtual brain models

Yeo and his team worked with researchers from Universitat Pompeu Fabra, Universitat Barcelona and University Medical Center Utrecht to analyze imaging data from 452 participants of the Human Connectome Project. Departing from previous modeling work, they allowed each brain region to have distinct cellular properties and exploited machine learning algorithms to automatically estimate the model parameters.

“Our approach achieves a much better fit with real data. Furthermore, we discovered that the micro-scale model parameters estimated by the machine learning algorithm reflect how the brain processes information,” said Peng Wang, Ph.D.,  who is the first author of the paper, and had conducted the study when he was a postdoctoral researcher on Yeo’s team.

The research team found that brain regions involved in sensory perception, such as vision, hearing and touch, exhibit cellular properties opposite from brain regions involved in internal thought and memories. The spatial pattern of the human brain’s cellular architecture closely reflects how the brain hierarchically processes information from the surroundings. This form of hierarchical processing is a key feature of both the human brain and recent advances in artificial intelligence.

“Our study suggests that the processing hierarchy of the brain is supported by micro-scale differentiation among its regions, which may provide further clues for breakthroughs in artificial intelligence,” said Yeo, who is also with the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering.

Moving forward, the NUS team plans to apply their approach to examine the brain data of individual participants, to better understand how individual variation in the brain’s cellular architecture may relate to differences in cognitive abilities. The team hopes that these latest results can be a step towards the development of individualized treatment plans with specific drugs or brain stimulation strategies.

For more information: www.advances.sciencemag.org

Reference

1. Wang P., Kong R., Kong X., et al. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, Jan. 9, 2019. DOI: 10.1126/sciadv.aat7854

Related Content

John Carrino, M.D., M.Ph., presents “Challenges and Opportunities for Radiology to Prove Value in Alternative Payment Models” at AHRA 2019

John Carrino, M.D., M.Ph., presents “Challenges and Opportunities for Radiology to Prove Value in Alternative Payment Models” at AHRA 2019. Photo by Greg Freiherr

Feature | Radiology Business | July 22, 2019 | By Greg Freiherr
Efforts to reform healthcare are booming, b
IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017.

IBM collected a dataset of 52,936 images from 13,234 women who underwent at least one mammogram between 2013 and 2017, and who had health records for at least one year prior to the mammogram. The algorithm was trained on 9,611 mammograms. Image courtesy of Radiology.

Feature | Artificial Intelligence | July 19, 2019 | Michal Chorev
Breast cancer is the global leading cause of cancer-related deaths in women, and the most commonly diagnosed cancer...
Paragon Biosciences Launches Qlarity Imaging to Advance FDA-cleared AI Breast Cancer Diagnosis System

Qlarity Imaging’s software is used to assist radiologists in the assessment and characterization of breast lesions. Imaging features are synthesized by an artificial intelligence algorithm into a single value, the QI score, which is analyzed relative to a database of reference abnormalities with known ground truth. Image courtesy of Business Wire.

Technology | Artificial Intelligence | July 18, 2019
Paragon Biosciences LLC announced the launch of its seventh portfolio company, Qlarity Imaging LLC, which was founded...
Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Two brain metastases from primary lung cancer are contrast enhanced in the brain of a 61-year-old male. Speakers at AHRA 2019 will state that ProHance and other macrocyclic MR agents present a very low risk to patients. Images courtesy of Bracco

Feature | Contrast Media | July 18, 2019 | By Greg Freiherr
Macrocyclic contrast agents have the best safety profile of all the magnetic resonance (MR) contrast media that are n
AAPM 2019 Features More Than 40 Presentations on ViewRay's MRIdian MRI-guided Radiotherapy
News | Image Guided Radiation Therapy (IGRT) | July 16, 2019
ViewRay Inc. announced that the company's MRIdian System is the focus of more than 40 abstracts selected by the...
FDA Approves Bayer's Gadavist Contrast for Cardiac MRI in Adult Coronary Artery Disease Patients
Technology | Contrast Media | July 15, 2019
The U.S. Food and Drug Administration (FDA) has approved Gadavist injection for use in cardiac magnetic resonance...
Graphic courtesy Pixabay

Graphic courtesy Pixabay

Feature | Artificial Intelligence | July 15, 2019 | By Greg Freiherr
Siemens has long focused on automation as a way to make diagnostic equipment faster and more efficient.