News | Artificial Intelligence | January 31, 2018

Machine Learning Techniques Generate Clinical Labels of Medical Scans

New study’s findings will help train artificial intelligence to diagnose diseases

Machine Learning Techniques Generate Clinical Labels of Medical Scans

January 31, 2018 — Researchers used machine learning techniques, including natural language processing algorithms, to identify clinical concepts in radiologist reports for computed tomography (CT) scans, according to a new study. The study was conducted at the Icahn School of Medicine at Mount Sinai and published in the journal Radiology. The technology is an important first step in the development of artificial intelligence (AI) that could interpret scans and diagnose conditions.

From an ATM reading handwriting on a check to Facebook suggesting a photo tag for a friend, computer vision powered by artificial intelligence is increasingly common in daily life. AI could one day help radiologists interpret X-rays, CT scans and magnetic resonance imaging (MRI) studies. But for the technology to be effective in the medical arena, computer software must be taught the difference between a normal study and abnormal findings.

This study aimed to train this technology how to understand text reports written by radiologists. Researchers created a series of algorithms to teach the computer clusters of phrases. Examples of terminology included words like phospholipid, heartburn and colonoscopy.

Researchers trained the computer software using 96,303 radiologist reports associated with head CT scans performed at The Mount Sinai Hospital and Mount Sinai Queens between 2010 and 2016. To characterize the “lexical complexity” of radiologist reports, researchers calculated metrics that reflected the variety of language used in these reports and compared these to other large collections of text: thousands of books, Reuters news stories, inpatient physician notes and Amazon product reviews.

“The language used in radiology has a natural structure, which makes it amenable to machine learning,” said senior author Eric Oermann, M.D., instructor in the Department of Neurosurgery at the Icahn School of Medicine at Mount Sinai.  “Machine learning models built upon massive radiological text datasets can facilitate the training of future artificial intelligence-based systems for analyzing radiological images.”

Deep learning describes a subcategory of machine learning that uses multiple layers of neural networks (computer systems that learn progressively) to perform inference, requiring large amounts of training data to achieve high accuracy. Techniques used in this study led to an accuracy of 91 percent, demonstrating that it is possible to automatically identify concepts in text from the complex domain of radiology.

"The ultimate goal is to create algorithms that help doctors accurately diagnose patients,” said first author John Zech, a medical student at the Icahn School of Medicine at Mount Sinai.  “Deep learning has many potential applications in radiology — triaging to identify studies that require immediate evaluation, flagging abnormal parts of cross-sectional imaging for further review, characterizing masses concerning for malignancy — and those applications will require many labeled training examples."

“Research like this turns big data into useful data and is the critical first step in harnessing the power of artificial intelligence to help patients,” said study co-author Joshua Bederson, M.D., professor and system chair for the Department of Neurosurgery at Mount Sinai Health System and clinical director of the Neurosurgery Simulation Core.

Researchers at Boston University and Verily Life Sciences collaborated on the study.

For more information: www.mountsinai.org

 

Related Content

Canon Aquilion One CT Helps Gates Vascular Institute Adhere to New Stroke Guidelines
News | Computed Tomography (CT) | December 12, 2018
In stroke, time saved on imaging is time gained in the treatment window. The recently updated guidelines from the...
Guerbet Showcases Diagnostic and Interventional Imaging Solutions at RSNA 2018
News | Interventional Radiology | December 12, 2018
Guerbet LLC USA highlighted new and next-level product offerings and partnerships in contrast media, injectors,...
Lunit Announces New Prominent Radiology Advisory Board Members
News | Artificial Intelligence | December 11, 2018
Medical artificial intelligence (AI) software company Lunit announced three new members of its advisory board,...
Coreline Soft Introduces AI Lung Segmentation Solution at RSNA 2018
News | Lung Cancer | December 10, 2018
December 10, 2018 — Korean image software company Coreline Soft Co. Ltd.
FDA Approves New Features for Planmed Verity Cone Beam CT Scanner
Technology | Computed Tomography (CT) | December 07, 2018
The U.S. Food and Drug Administration (FDA) issued an approval letter for the new features and intended uses of the...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis
Technology | Mammography | December 07, 2018
iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer...
YITU Releases AI-Based Cancer Screening Solutions at RSNA 2018
News | Artificial Intelligence | December 06, 2018
Chinese artificial intelligence (AI) healthcare company YITU healthcare released two brand-new products, Intelligent...
Guerbet Launches Multi-Use OptiVantage Contrast Media Injector in Europe
Technology | Contrast Media Injectors | December 05, 2018
Contrast agent company Guerbet recently announced that the OptiVantage multi-use contrast media injector is now CE...