News | Artificial Intelligence | January 31, 2018

Machine Learning Techniques Generate Clinical Labels of Medical Scans

New study’s findings will help train artificial intelligence to diagnose diseases

Machine Learning Techniques Generate Clinical Labels of Medical Scans

January 31, 2018 — Researchers used machine learning techniques, including natural language processing algorithms, to identify clinical concepts in radiologist reports for computed tomography (CT) scans, according to a new study. The study was conducted at the Icahn School of Medicine at Mount Sinai and published in the journal Radiology. The technology is an important first step in the development of artificial intelligence (AI) that could interpret scans and diagnose conditions.

From an ATM reading handwriting on a check to Facebook suggesting a photo tag for a friend, computer vision powered by artificial intelligence is increasingly common in daily life. AI could one day help radiologists interpret X-rays, CT scans and magnetic resonance imaging (MRI) studies. But for the technology to be effective in the medical arena, computer software must be taught the difference between a normal study and abnormal findings.

This study aimed to train this technology how to understand text reports written by radiologists. Researchers created a series of algorithms to teach the computer clusters of phrases. Examples of terminology included words like phospholipid, heartburn and colonoscopy.

Researchers trained the computer software using 96,303 radiologist reports associated with head CT scans performed at The Mount Sinai Hospital and Mount Sinai Queens between 2010 and 2016. To characterize the “lexical complexity” of radiologist reports, researchers calculated metrics that reflected the variety of language used in these reports and compared these to other large collections of text: thousands of books, Reuters news stories, inpatient physician notes and Amazon product reviews.

“The language used in radiology has a natural structure, which makes it amenable to machine learning,” said senior author Eric Oermann, M.D., instructor in the Department of Neurosurgery at the Icahn School of Medicine at Mount Sinai.  “Machine learning models built upon massive radiological text datasets can facilitate the training of future artificial intelligence-based systems for analyzing radiological images.”

Deep learning describes a subcategory of machine learning that uses multiple layers of neural networks (computer systems that learn progressively) to perform inference, requiring large amounts of training data to achieve high accuracy. Techniques used in this study led to an accuracy of 91 percent, demonstrating that it is possible to automatically identify concepts in text from the complex domain of radiology.

"The ultimate goal is to create algorithms that help doctors accurately diagnose patients,” said first author John Zech, a medical student at the Icahn School of Medicine at Mount Sinai.  “Deep learning has many potential applications in radiology — triaging to identify studies that require immediate evaluation, flagging abnormal parts of cross-sectional imaging for further review, characterizing masses concerning for malignancy — and those applications will require many labeled training examples."

“Research like this turns big data into useful data and is the critical first step in harnessing the power of artificial intelligence to help patients,” said study co-author Joshua Bederson, M.D., professor and system chair for the Department of Neurosurgery at Mount Sinai Health System and clinical director of the Neurosurgery Simulation Core.

Researchers at Boston University and Verily Life Sciences collaborated on the study.

For more information: www.mountsinai.org

 

Related Content

Machine Learning IDs Markers to Help Predict Alzheimer's

Neurologists use structural and diffusion magnetic resonance imaging (MRI) to identify changes in brain tissue (both gray and white matter) that are characteristic of Alzheimer's disease and other forms of dementia. The MRI images are analyzed using morphometry and tractography techniques, which detect changes in the shape and dimensions of the brain and in the tissue microstructure, respectively. In this example, the images show the normal brain of an elderly patient. Image courtesy of Jiook Cha.

News | Neuro Imaging | September 20, 2018
New research has shown a combination of two different modes of magnetic resonance imaging (MRI), computer-based...
LVivo EF Cardiac Tool Now Available for GE Vscan Extend Handheld Mobile Ultrasound
Technology | Cardiovascular Ultrasound | September 19, 2018
DiA Imaging Analysis Ltd. (DiA), a provider of artificial intelligence (AI)-powered ultrasound analysis tools,...
Exact Imaging Partners to Improve Prostate Cancer Detection With Artificial Intelligence
News | Prostate Cancer | September 19, 2018
Exact Imaging, makers of the ExactVu micro-ultrasound platform, has partnered with U.K.-based Cambridge Consultants to...
SimonMed Deploys ClearRead CT Enterprise Wide
News | Computer-Aided Detection Software | September 17, 2018
September 17, 2018 — National outpatient physician radiology group SimonMed Imaging has selected Riverain Technologie
Siemens Healthineers Announces First U.S. Install of Somatom go.Top CT
News | Computed Tomography (CT) | September 17, 2018
September 17, 2018 — The Ohio State University Wexner Medical Center in Columbus recently became the first healthcare
Acuson Sequoia
News | Ultrasound Imaging | September 12, 2018
Siemens Healthineers announced the first global installation of its newest ultrasound system, the...
Veye Chest version 2
News | Lung Cancer | September 11, 2018
Aidence, an Amsterdam-based medical AI company, announced that Veye Chest version 2, a class IIa medical device, has
Sponsored Content | Case Study | Information Technology | September 07, 2018
Established in 1970, Sovah Health – Martinsville, Va., resides in the foothills of the beautiful Blue Ridge Mountains...
Sponsored Content | Case Study | Information Technology | September 07, 2018
One of the Northeast’s major teaching hospitals is an international leader in virtually every area of medicine. It has...
Feature | Population Health | September 07, 2018 | By Jeff Zagoudis
Over the last several years in the U.S., healthcare providers have been trying to shift their focus to more preventive...