News | Magnetic Resonance Imaging (MRI) | September 25, 2019

U.K. study finds cardiac MRI scans can be read by artificial intelligence 186 times faster than humans, with comparable precision to experts

Machine Learning Could Offer Faster, More Precise Cardiac MRI Scan Results

September 25, 2019 – Cardiac magnetic resonance imaging (MRI) analysis can be performed significantly faster with similar precision to experts when using automated machine learning, according to new research. The study was published in Circulation: Cardiovascular Imaging, an American Heart Association journal.[1]

Currently, analyzing heart function on cardiac MRI scans takes approximately 13 minutes for humans. Utilizing artificial intelligence (AI) in the form of machine learning, a scan can be analyzed with comparable precision in approximately four seconds.

Healthcare professionals regularly use cardiac MRI scans to make measurements of heart structure and function that guide patient care and treatment recommendations. Many important clinical decisions including timing of cardiac surgery, implantation of defibrillators, and continuing or stopping cardiotoxic chemotherapy, rely on accurate and precise measurements. Improving the performance of these measures could potentially improve patient management and outcomes.

In the U.K., where the study was conducted, it is estimated that more than 150,000 cardiac MRI scans are performed each year. Based on the number of scans per year, researchers believe that utilizing AI to read scans could potentially lead to saving 54 clinician-days per year at each U.K. health center.

Researchers trained a neural network to read the cardiac MRI scans and the results of almost 600 patients. When the AI was tested for precision compared to an expert and trainee on 110 separate patients from multiple centers, researchers found that there was no significant difference in accuracy.

“Cardiovascular MRI offers unparalleled image quality for assessing heart structure and function; however, current manual analysis remains basic and outdated. Automated machine learning techniques offer the potential to change this and radically improve efficiency, and we look forward to further research that could validate its superiority to human analysis,” said study author Charlotte Manisty, M.D. Ph.D. “Our dataset of patients with a range of heart diseases who received scans enabled us to demonstrate that the greatest sources of measurement error arise from human factors. This indicates that automated techniques are at least as good as humans, with the potential soon to be ‘super-human’ — transforming clinical and research measurement precision.”

Although the study did not demonstrate superiority of AI over human experts and was not used prospectively for clinical assessment of patient outcomes, this study highlights the potential that such techniques could have in the future to improve analysis and influence clinical decision making for patients with heart disease.

For more information: www.ahajournals.org/journal/circimaging

 

Reference

1. Bhuva A.N., Bai W., Lau C., et al. A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, published online Sept. 24, 2019. https://doi.org/10.1161/CIRCIMAGING.119.009214

Related Content

News | Artificial Intelligence

November 24, 2021 — Radiologists can now register their practices to take part in the next-generation American College ...

Time November 24, 2021
arrow
News | Magnetic Resonance Imaging (MRI)

November 24, 2021 — Royal Philips announced new AI-enabled innovations in MR imaging launching at the Radiological ...

Time November 24, 2021
arrow
News | Coronavirus (COVID-19)

November 24, 2021 — Significant decreases in CT imaging for cancer persisted even after the peak of the COVID-19 ...

Time November 24, 2021
arrow
News | Lung Imaging

November 23, 2021 — Median Technologies announces new outstanding performance of its lung cancer screening (LCS) CADx1 ...

Time November 23, 2021
arrow
News | Artificial Intelligence

November 23, 2021 — Laurel Bridge Software Inc., a provider of imaging software solutions that enables health systems to ...

Time November 23, 2021
arrow
News | Artificial Intelligence

November 23, 2021 — The results of a unique two-tiered brain tumor AI challenge were announced today by the Radiological ...

Time November 23, 2021
arrow
News | Artificial Intelligence

November 23, 2021 — Royal Philips announced a collaboration with U.S.-based MedChat to integrate MedChat’s live chat and ...

Time November 23, 2021
arrow
News | Magnetic Resonance Imaging (MRI)

November 23, 2021 — Researchers at Yale University analyzing specialized MRI exams found significant changes in the ...

Time November 23, 2021
arrow
News | Interventional Radiology

November 23, 2021 — A minimally invasive ablation procedure offers long-term relief for patients who experience chronic ...

Time November 23, 2021
arrow
News | Information Technology

November 22, 2021 — While still a relatively young enterprise in the radiology IT space, Within Health already has some ...

Time November 22, 2021
arrow
Subscribe Now