News | Magnetic Resonance Imaging (MRI) | September 25, 2019

U.K. study finds cardiac MRI scans can be read by artificial intelligence 186 times faster than humans, with comparable precision to experts

Machine Learning Could Offer Faster, More Precise Cardiac MRI Scan Results

September 25, 2019 – Cardiac magnetic resonance imaging (MRI) analysis can be performed significantly faster with similar precision to experts when using automated machine learning, according to new research. The study was published in Circulation: Cardiovascular Imaging, an American Heart Association journal.[1]

Currently, analyzing heart function on cardiac MRI scans takes approximately 13 minutes for humans. Utilizing artificial intelligence (AI) in the form of machine learning, a scan can be analyzed with comparable precision in approximately four seconds.

Healthcare professionals regularly use cardiac MRI scans to make measurements of heart structure and function that guide patient care and treatment recommendations. Many important clinical decisions including timing of cardiac surgery, implantation of defibrillators, and continuing or stopping cardiotoxic chemotherapy, rely on accurate and precise measurements. Improving the performance of these measures could potentially improve patient management and outcomes.

In the U.K., where the study was conducted, it is estimated that more than 150,000 cardiac MRI scans are performed each year. Based on the number of scans per year, researchers believe that utilizing AI to read scans could potentially lead to saving 54 clinician-days per year at each U.K. health center.

Researchers trained a neural network to read the cardiac MRI scans and the results of almost 600 patients. When the AI was tested for precision compared to an expert and trainee on 110 separate patients from multiple centers, researchers found that there was no significant difference in accuracy.

“Cardiovascular MRI offers unparalleled image quality for assessing heart structure and function; however, current manual analysis remains basic and outdated. Automated machine learning techniques offer the potential to change this and radically improve efficiency, and we look forward to further research that could validate its superiority to human analysis,” said study author Charlotte Manisty, M.D. Ph.D. “Our dataset of patients with a range of heart diseases who received scans enabled us to demonstrate that the greatest sources of measurement error arise from human factors. This indicates that automated techniques are at least as good as humans, with the potential soon to be ‘super-human’ — transforming clinical and research measurement precision.”

Although the study did not demonstrate superiority of AI over human experts and was not used prospectively for clinical assessment of patient outcomes, this study highlights the potential that such techniques could have in the future to improve analysis and influence clinical decision making for patients with heart disease.

For more information: www.ahajournals.org/journal/circimaging

 

Reference

1. Bhuva A.N., Bai W., Lau C., et al. A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, published online Sept. 24, 2019. https://doi.org/10.1161/CIRCIMAGING.119.009214


Related Content

News | PACS

February 22, 2024 — aycan, a recognized leader in medical imaging, announced that Enspectra Health used aycan’s PACS ...

Time February 22, 2024
arrow
News | Breast Imaging

February 22, 2024 — The FAST-Forward randomized trial from the UK found that ultrahypofractionated whole breast ...

Time February 22, 2024
arrow
Feature | HIMSS | Christine Book

February 22, 2024 — With just weeks to go before HIMSS 2024, the Global Conference and Exhibition of the Healthcare ...

Time February 22, 2024
arrow
News | Magnetic Resonance Imaging (MRI)

February 21, 2024 — Hyperfine, Inc., a groundbreaking health technology company that has redefined brain imaging with ...

Time February 21, 2024
arrow
News | Artificial Intelligence

February 22, 2024 — Hartford HealthCare has announced the unveiling of its Center for AI Innovation in Healthcare ...

Time February 21, 2024
arrow
Videos | Information Technology

Industry trade shows and conferences seem to be making their comeback in 2024. And the Healthcare Information and ...

Time February 21, 2024
arrow
News | Computed Tomography (CT)

February 20, 2024 — Ultrahigh-spatial-resolution photon-counting detector CT improved assessment of coronary artery ...

Time February 20, 2024
arrow
News | Cardiac Imaging

February 12, 2024 — According to the American Journal of Roentgenology (AJR), free-breathing cine-deep learning (DL) may ...

Time February 12, 2024
arrow
Sponsored Content | Videos | Digital Radiography (DR)

Agfa Radiology Solutions is committed to enhancing clinical outcomes and operational efficiency, underscoring its ...

Time February 12, 2024
arrow
News | Artificial Intelligence

February 8, 2024 — Paige, a global leader in end-to-end digital pathology solutions and clinical Artificial Intelligence ...

Time February 08, 2024
arrow
Subscribe Now