News | Magnetic Resonance Imaging (MRI) | September 25, 2019

U.K. study finds cardiac MRI scans can be read by artificial intelligence 186 times faster than humans, with comparable precision to experts

Machine Learning Could Offer Faster, More Precise Cardiac MRI Scan Results

September 25, 2019 – Cardiac magnetic resonance imaging (MRI) analysis can be performed significantly faster with similar precision to experts when using automated machine learning, according to new research. The study was published in Circulation: Cardiovascular Imaging, an American Heart Association journal.[1]

Currently, analyzing heart function on cardiac MRI scans takes approximately 13 minutes for humans. Utilizing artificial intelligence (AI) in the form of machine learning, a scan can be analyzed with comparable precision in approximately four seconds.

Healthcare professionals regularly use cardiac MRI scans to make measurements of heart structure and function that guide patient care and treatment recommendations. Many important clinical decisions including timing of cardiac surgery, implantation of defibrillators, and continuing or stopping cardiotoxic chemotherapy, rely on accurate and precise measurements. Improving the performance of these measures could potentially improve patient management and outcomes.

In the U.K., where the study was conducted, it is estimated that more than 150,000 cardiac MRI scans are performed each year. Based on the number of scans per year, researchers believe that utilizing AI to read scans could potentially lead to saving 54 clinician-days per year at each U.K. health center.

Researchers trained a neural network to read the cardiac MRI scans and the results of almost 600 patients. When the AI was tested for precision compared to an expert and trainee on 110 separate patients from multiple centers, researchers found that there was no significant difference in accuracy.

“Cardiovascular MRI offers unparalleled image quality for assessing heart structure and function; however, current manual analysis remains basic and outdated. Automated machine learning techniques offer the potential to change this and radically improve efficiency, and we look forward to further research that could validate its superiority to human analysis,” said study author Charlotte Manisty, M.D. Ph.D. “Our dataset of patients with a range of heart diseases who received scans enabled us to demonstrate that the greatest sources of measurement error arise from human factors. This indicates that automated techniques are at least as good as humans, with the potential soon to be ‘super-human’ — transforming clinical and research measurement precision.”

Although the study did not demonstrate superiority of AI over human experts and was not used prospectively for clinical assessment of patient outcomes, this study highlights the potential that such techniques could have in the future to improve analysis and influence clinical decision making for patients with heart disease.

For more information: www.ahajournals.org/journal/circimaging

 

Reference

1. Bhuva A.N., Bai W., Lau C., et al. A Multicenter, Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis. Circulation: Cardiovascular Imaging, published online Sept. 24, 2019. https://doi.org/10.1161/CIRCIMAGING.119.009214


Related Content

News | Stroke

Dec. 18, 2025 — Brainomix, a provider of AI-powered imaging biomarkers for stroke and lung fibrosis, has announced ...

Time December 24, 2025
arrow
News | Information Technology

Dec. 16, 2025 — McCrae Tech has launched the world’s first health AI orchestrator called Orchestral. It is a health ...

Time December 23, 2025
arrow
News | RSNA 2025

Dec. 12, 2025 — At RSNA 2025, United Imaging Intelligence (UII), the AI-focused subsidiary of United Imaging Group ...

Time December 17, 2025
arrow
News | Breast Imaging

Dec. 16, 2025 — Hologic, Inc, a medical technology company dedicated to improving women’s health, recently announced new ...

Time December 16, 2025
arrow
News | Stroke

Dec. 12, 2025 — Hyperfine, Inc. has announced that it has received FDA clearance for a new multi-direction diffusion ...

Time December 15, 2025
arrow
News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
Feature | Radiation Oncology | Kyle Hardner

Genomics has guided personalized cancer treatments for the past two decades. Now, AI biomarkers are expanding the field ...

Time December 09, 2025
arrow
Feature | Uzay Emir and Stephen Sawiak

Healthcare has reached a critical juncture. The World Economic Forum estimates that global medical costs will see double ...

Time December 04, 2025
arrow
News | Women's Health

Dec. 1, 2025 — ScreenPoint Medical has completed a commercial agreement making its Transpara breast-imaging AI portfolio ...

Time December 03, 2025
arrow
News | Information Technology

Dec. 1, 2025 — BioSked has announced a major expansion of its Momentum scheduling platform, introducing one of the first ...

Time December 03, 2025
arrow
Subscribe Now