News | Neuro Imaging | March 30, 2016

Imaging Predicts Long-term Brain Injury Effects in Veterans

MRI technique examines white matter to evaluate concussion symptoms post-deployment

DTI, MRI, veterans, concussion effects, brain injury, Radiology

Blue indicates regions of the brain in which lower fractional anisotropy (a measure of microstructural integrity) correlated with more severe neurobehavioral symptoms. Veterans with the most severe symptoms had lower microstructural integrity in these regions. Image courtesy of the Radiological Society of North America.

March 30, 2016 — Diffusion tensor imaging (DTI), a type of magnetic resonance imaging (MRI), may be able to predict functional post-deployment outcomes for veterans who sustained mild traumatic brain injury (MTBI), or concussion, during combat, according to a new study published in the journal Radiology.

Current assessment of MTBI remains challenging due to the difficulties in establishing the diagnosis, predicting outcomes and separating the effects of MTBI from other conditions like post-traumatic stress disorder (PTSD).

DTI uses measurements of water movement in the brain to detect abnormalities, particularly in white matter. Previous studies have linked DTI metrics to neurocognitive function and short-term functional outcomes in groups of patients. The desire to uncover possible long-term effects spurred Jeffrey B. Ware, M.D., from the Philadelphia VA Medical Center in Philadelphia, Pa., to evaluate combat veterans using this technique.

Ware and colleagues used brain MRI and DTI to study 57 military veterans who had a clinical diagnosis of MTBI upon return from deployment. The average length of time between injury and post-deployment evaluation was 3.8 years, with an average follow-up duration of 1.4 years.

"All conventional MR images were interpreted as normal," Ware said. "We retrospectively analyzed the data from the DTI sequence to derive measures of white matter integrity, which we compared to clinical measures and subsequent outcome measures 6 months to 2.5 years after the initial evaluation."

The results showed significant associations between initial post-deployment DTI measurements and neurobehavioral symptoms, timing of injury and subsequent functional outcomes. The measurements also correlated with greater healthcare utilization among veterans with MTBI.

Following initial post-deployment evaluation, 34 of the study participants returned to work. Veterans who did not return to work displayed significantly lower fractional anisotropy (FA) and higher diffusivity in a specific brain region, the left internal capsule. These measures imply less structural integrity in that area of the brain. As this region is known to contain important fibers providing motor stimulation to the typically dominant right side of the body, the results may provide a correlation between impairments in fine motor functioning and inability to return to work.

"Our findings suggest that differences in white matter microstructure may partially account for the variance in functional outcomes among this population. In particular, loss of white matter integrity has a direct, measurable effect," Ware said. "It was illuminating to see the association between measures of white matter integrity and important outcomes occurring months to years down the road in our study population."

Collaborating with Ware on this paper were Rosette C. Biester, Ph.D.; Elizabeth Whipple, M.S.; Keith M. Robinson, M.D.; Richard J. Ross, M.D., Ph.D.; and Paolo G. Nucifora, M.D., Ph.D.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging.

An illustration based on simulations by Rice University engineers shows a gadolinium ion (blue) in water (red and white), with inner-sphere water -- the water most affected by the gadolinium -- highlighted. The researchers’ models of gadolinium in water show there’s room for improvement in compounds used as contrast agents in clinical magnetic resonance imaging. Illustration by Arjun Valiya Parambathu

News | Magnetic Resonance Imaging (MRI) | September 20, 2021
September 20, 2021 — ...
Avoiding contrast dyes for imaging tests not necessary if concerned about iodine allergy, peer-reviewed study concludes #MRI

Getty Images

News | Contrast Media Injectors | September 16, 2021
September 16, 2021 — FDB (First Databank), a leading provider of drug and medical device knowledge that helps healthc
Revised guidelines for lung cancer screening eligibility are perpetuating disparities for racial/ethnic minorities, according to a new study in Radiology.

Getty Images

News | Lung Imaging | September 15, 2021
September 15, 2021 — Revised guidelines for...
To get more flexibility and cost savings from storage, healthcare organizations are increasing their investments in the cloud
Feature | Information Technology | September 15, 2021 | By Kumar Goswami
Healthcare organizations today are storing petabytes of medical imaging data — lab slides,...
As with all imaging technologies, COVID-19 is expected to continue to negatively impact the market.

Courtesy of Grand View Research

Feature | Magnetic Resonance Imaging (MRI) | September 14, 2021 | By Melinda Taschetta-Millane
Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Figure 1: MWT Schematic of a typical setup for detecting malignant tissues/tumors.

Feature | Radiology Imaging | September 14, 2021 | By Brendon McHugh
Plan to attend RSNA21 at McCormick Place Chicago, Nov. 28 – Dec. 2, 2021

Getty Images

News | RSNA | September 13, 2021
September 13, 2021 — The Radiological Society of North America (RSNA) today announced highlights of the Technical Exh
New recommendations will help provide more reliable, reproducible results for MRI-based measurements of cartilage degeneration in the knee, helping to slow down disease and prevent progression to irreversible osteoarthritis, according to a special report published in the journal Radiology

Knee cartilage compartments with anatomic labels implemented in lateral (left side), central (middle), and medial (right side) MRI obtained with an intermediate weighted fat-saturated fast-spin-echo sequence (top row) and a spin-lattice relaxation time constant in rotating frame (T1r) magnetization-prepared angle-modulated partitioned k-space spoiled gradient echo snapshots sequence (bottom row, T1r maps). Study was performed without administration of intravenous gadolinium-based contrast material. The lateral femur (LF)/medial femur (MF) and lateral tibia (LT)/medial tibia (MT) can be further divided into subcompartments on the basis of meniscus anatomy according to Eckstein et al. P = patella, T = trochlea.  Chalian et al, Radiology 2021 301; 7 ©RSNA 2021

News | Magnetic Resonance Imaging (MRI) | September 10, 2021
September 10, 2021 — New recommendations will help provide more reliable, reproducible results for...
Laws designed to help women with increased risk for missed breast cancer diagnoses may help catch the disease earlier, according to Penn State College of Medicine researchers.

Getty Images | AleksandarNakic

News | Breast Imaging | September 09, 2021
September 9, 2021 — Laws designed to help women with increased risk for...