News | Artificial Intelligence | February 23, 2021

Icometrix Expands Icobrain Portfolio with Ischemic Stroke Solution

icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio

icobrain cva allows the quantitative assessment of tissue perfusion by reporting the volume of core and perfusion lesion by quantifying Tmax abnormality and CBF abnormality together with the mismatch volume and ratio

February 23, 2021 — icometrix, world leader in imaging artificial intelligence (AI) solutions for people with neurological conditions, announced the addition of icobrain cva, a stroke solution, to the icobrain portfolio. The announcement follows the FDA-clearance and CE-marking of its image processing software for the analysis and communication of the tissue perfusion state on computed tomography (CT) perfusion scans in patients with ischemic stroke. icobrain cva provides physicians with fast, fully automated, and state-of-the-art insights to support treatment decisions in acute ischemic stroke.

Since 2018, treatment guidelines for stroke have expanded the treatment window for mechanical thrombectomy from 6 to 24 hours. Treatment for ischemic stroke is not without risk and requires careful patient selection based on their tissue status. The automated assessment of tissue parameters in an acute clinical setting by icobrain cva will allow more patients to get the right treatment and can improve patient outcomes and care while increasing efficiency.

"With the launch of icobrain cva we address a persisting need in the treatment of acute ischemic stroke. By democratizing advanced CT perfusion analysis for healthcare systems worldwide we take the next step in our mission to become a holistic brain solution provider," said Wim Van Hecke, CEO at icometrix.

"The main challenge of current stroke solutions is correctly identifying the entry point of the injected contrast in the brain. icobrain cva introduces new, patented, deep learning technology into this identification process to achieve a more robust assessment of the infarcted area," explained Dirk Smeets, CTO at icometrix.

icobrain cva is a fully-automated CE-marked and FDA-cleared software solution for the quantitative assessment of tissue perfusion on CT. icobrain cva reports the volume of the core and perfusion lesion by quantifying reduced cerebral blood flow, volume, and transit time. The report includes information on the correctness of the selected arterial input function and the quality of the output. icobrain cva is a cloud-based solution, returning a report and perfusion maps straight into your PACS and e-mail inbox.

For more information: icometrix.com

Related Content

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in

Examples of the imaging performance of XPCI-CT (b,e) compared to conventional specimen radiography (a,d) and benchmarked against histopathology (c,f). he top row focuses on the similarity between the XPCI-CT slice in (b) and the histological slice in (c). Arrow 1 indicates margin involvement, arrow 2 a variation in density in the internal structure of the tumour mass, arrow 3 tumour-induced inflammation. All this is confirmed by the histological slice in (c), and hardly visible in the conventional image in (a). The bottom row focuses on the detection of small calcifications, a key feature in DCIS. These are undetectable in (d), detected in (e), enhanced in the maximum intensity projection (MIP) image at the bottom of (f), and confirmed by histopathology in the top part of (f). The scale bar [shown in (b) and (e)] is the same for all images apart from (f), which has its own scale. Red arrows in (e) and (f) indicate the microcalcifications. Image courtesy of Professor Alessandro Olivo

News | Breast Imaging | February 22, 2021
February 22, 2021 — A new X-ray imaging scanne
Dr Sahar Saleem placing the mummy in the CT scanner

Dr. Sahar Saleem placing the mummy in the CT scanner. Image courtesy of Sahar Saleem

News | Computed Tomography (CT) | February 22, 2021
February 22, 2021 — Modern medical technology is helping scholars tell a more nuanced story about the fate of an anci
 Enterprise imaging systems provider Intelerad Medical Systems announced it has acquired Lumedx, a leading provider of healthcare analytics and cardiovascular information systems (CVIS). 
News | Enterprise Imaging | February 18, 2021
February 18, 2021 – Enterprise imaging systems provider Intelerad Medical Systems announced it has acquired...
GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

GE Healthcare introduced its artificial intelligence (AI) automation features on its Voluson Swift ultrasound platform at the 2020 Radiological Society of North America (RSNA) virtual meeting. Features of this system include semi-automated contouring, auto identification of fetal anatomy and positioning on imaging. AI is seeing increasing integration in ultrasound systems from numerous vendors.

Feature | Ultrasound Imaging | February 18, 2021 | By Dave Fornell, Editor
Recent advances in ultrasound image sy...
Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (a–c) are taken from a patient with a Pilocytic Astrocytoma, (d–f) are from a patient with an Ependymoma and (g–i) were acquired from a patient with a Medulloblastoma.

Example MR images from paediatric brain tumour patients. This first column shows T1-weighted images following the injection of gadolinium contrast agent. The second column shows T2-weighted images and the final column shows apparent diffusion coefficient maps calculated from diffusion-weighted images. (ac) are taken from a patient with a Pilocytic Astrocytoma, (df) are from a patient with an Ependymoma and (gi) were acquired from a patient with a Medulloblastoma. Image courtesy of Nature Research Journal

News | Pediatric Imaging | February 17, 2021
February 17, 2021 — Diffusio...
Radiology, radiation therapy, PACS, Enterprise image, X-ray, DR Systems, CT, MRI, contrast, ultrasound, VNA, product comparisons, comparison charts on ITN magazine.
Feature | February 17, 2021
Imaging Technology News (ITN) maintains more than 40
The British Institute of Radiology supports the proposal by AXREM that staff members from private suppliers who work shoulder to shoulder with National Health Service (NHS) staff in high-risk areas in hospitals should be recognised as frontline health and social care staff and prioritised for COVID-19 vaccination accordingly.

Getty Images

News | Coronavirus (COVID-19) | February 12, 2021
February 12, 2021 — The British Institute of Radiology supports the proposal by...
The research collaboration agreement covers a joint clinical retrospective study on liver fibrosis severity in Non-Alcoholic Steato-Hepatitis (NASH) patients
News | Artificial Intelligence | February 10, 2021
February 10, 2021 — Median Technologies announced the company has signed a research collaboration agreement with the
Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress".

Unhealthy lifestyles, various diseases, stress, and aging can all contribute to an imbalance between the production of ROS and the body's ability to reduce and eliminate them. The resulting excessive levels of ROS cause "oxidative stress". Graphic courtesy of National Institutes for Quantum and Radiological Science and Technology

News | Magnetic Resonance Imaging (MRI) | February 10, 2021
February 10, 2021 — Oxygen is essential for human life, but within the body, certain biological environmental conditi