News | Radiation Therapy | May 19, 2021

Hydrogen Peroxide-producing Drug Boosts Cancer-Killing Effect of Radiotherapy

Drug simultaneously protects healthy tissue from harmful radiation side-effects

The drug, known as Avasopasem manganese, is made by Galera Therapeutics. It acts like a natural enzyme called superoxide dismutase and converts superoxide into hydrogen peroxide. Based on its ability to "mop up" damaging superoxide molecules, which are produced by radiation treatment, the drug is currently in clinical trials to test its ability to protect mucosal tissue from the side-effect of radiotherapy.

Getty Images

May 19, 2021 — A small drug molecule that appears to protect normal tissue from the damaging effects of radiation, may simultaneously be able to boost the cancer-killing effect of radiation therapy, according to a new study led by scientists at University of Iowa, University of Texas Southwestern Medical Center and Galera Therapeutics, Inc.

The study, published online May 12 in Science Translational Medicine, suggests that the drug's dual effect is based on a fundamental difference between the ability of cancer cells and healthy cells to withstand the damaging effects of a highly reactive molecule called hydrogen peroxide, which is produced during the dismutation of superoxide.

The drug, known as Avasopasem manganese, is made by Galera Therapeutics. It acts like a natural enzyme called superoxide dismutase and converts superoxide into hydrogen peroxide. Based on its ability to "mop up" damaging superoxide molecules, which are produced by radiation treatment, the drug is currently in clinical trials to test its ability to protect mucosal tissue from the side-effect of radiotherapy.

Since radiation generates large amounts of superoxide, combining the drug with radiation therapy can generate high levels of hydrogen peroxide. This does not harm normal tissue because healthy cells have metabolic systems that remove hydrogen peroxide. In contrast, cancer cells, which are biologically abnormal, can be overwhelmed by high levels of hydrogen peroxide.

"Cancer cells and healthy cells respond very differently to the increased amount of hydrogen peroxide," said Douglas Spitz, Ph.D., UI professor of radiation oncology and co-lead author of the study. "Our study shows that Avasopasem manganese interacts synergistically with high doses of radiation to create hydrogen peroxide that selectively kill cancer cells but is relatively harmless to normal tissue."

The study showed that in mouse models of lung and pancreatic cancer the drug synergized with radiotherapy to such an extent that the treatment was able to destroy the tumors. The study also showed the greatest synergy occurred with high daily dose radiotherapy, similar to the doses delivered with Stereotactic Body Radiation Therapy (SBRT) currently used to treat some patients with cancer.

The researchers used several experiments to confirm that hydrogen peroxide was the key component in the synergistic effect. They showed the effect was blocked by adding in an enzyme that removes hydrogen peroxide and was enhanced when hydrogen peroxide breakdown was prevented.

"These findings are the result of collaborative efforts over several years by scientists primarily at Iowa, UT Southwestern Medical Center, and Galera, and are already being translated into several ongoing clinical studies," added Spitz, who is a member of Holden Comprehensive Cancer Center at the UI. "One of those early phase trials recently reported that Avasopasem manganese in combination with high daily dose radiotherapy appears to nearly double overall survival in patients with pancreatic cancer compared to a placebo plus the same radiotherapy. Our study lays out the novel scientific basis for this potentially ground-breaking therapy for patients."

For more information: www.uihealthcare.com

Related Content

According to a new study, by the Harvey L. Neiman Health Policy Institute and the American College of Radiology’s National Mammography Database Committee, the most influential radiologist characteristics impacting mammography interpretive performance were geography, breast sub-specialization, performance of diagnostic mammography, and performance of diagnostic ultrasound.

Getty Images

News | Breast Imaging | June 23, 2021
June 23, 2021 — According to a new ...
Master Supply Agreement encompasses clinical development and commercial supply for Clarity’s Cu-67-based candidates to treat neuroblastoma, breast and prostate cancers, among others
News | Radiopharmaceuticals and Tracers | June 22, 2021
June 22, 2021 — NorthStar Medical Radioisotopes, LLC, a global innovator in the development, production and commercia
A phase III clinical trial has validated the effectiveness of the prostate-specific membrane antigen (PSMA)-targeted radiotracer 18F-DCFPyL in detecting and localizing recurrent prostate cancer.

Figure 1. Case example: A 54-year-old man with a history of RP+LND and a subsequent PSA of 1.25 ng/mL had no evidence of disease by baseline imaging. Piflufolastat F 18 (18F-DCFPyL)- PET/CT accurately detected biochemically recurrent prostate cancer with the PSMA PET/CT scan identifying positive left (left panel) and right peri-rectal lymph nodes (right panel).

News | Prostate Cancer | June 21, 2021
June 21, 2021 — A phase III clinica...
Elekta Harmony linear accelerator cleared by U.S. Food and Drug Administration
News | Linear Accelerators | June 18, 2021
June 18, 2021 — Elekta announced that its Elekta Harmony...
SNMMI's Image of the Year is a detailed depiction of areas of cognitive impairment, neurological symptoms and comparison of impairment over a six-month time frame

Figure 1. A: COVID-19-related spatial covariance pattern of cerebral glucose metabolism overlaid onto an MRI template. Voxels with negative region weights are color-coded in cool colors, and regions with positive region weights in hot colors. B: Association between the expression of COVID-19-related covariance pattern and the Montreal Cognitive Assessment (MoCA) score adjusted for years of education. Each dot represents individual patient. C: Results of a statistical parametric mapping analysis. Upper row illustrates regions that show significant increases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the subacute stage (paired t test, p < 0.01, false discovery rate-corrected). Bottom row depicts regions that still show significant decreases of normalized FDG uptake in COVID-19 patients at 6-months follow-up compared to the age-matched control cohort at an exploratory statistical threshold (two-sample t test, p < 0.005). Image Credit: G Blazhenets et al., Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg

News | PET Imaging | June 16, 2021
June 16, 2021 — The effects of COVID-19 on the b
The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images

News | Artificial Intelligence | June 15, 2021
June 15, 2021 — The impact of deploying ...
The prevalence of genetic mutations associated with breast cancer in Black and white women is the same, according to a new JAMA Oncology study of nearly 30,000 patients led by researchers in the Basser Center for BRCA at the Abramson Cancer Center.

Getty Images

News | Women's Health | June 15, 2021
June 15, 2021 — The prevalence of genetic mutations associated with breast cancer in Black and white women is the sam
Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT
News | Computed Tomography (CT) | June 14, 2021
June 14, 2021 — Heart disease and cancer are the ...
Accuray Incorporated announced the company has received CE Mark certification for its ClearRT helical fan-beam kVCT imaging capability.
News | Radiation Therapy | June 11, 2021
June 11, 2021 — Accuray Incorporated announced the company has received CE Mark certification for its...
The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

The new X-ray scanner can provide detailed information about the internal makeup of rocks, which could be useful for archaeologists studying fossils or miners making decisions about which ore to use in their extraction facilities. Image courtesy of Joel Greenberg, Duke University

News | X-Ray | June 10, 2021
June 10, 2021 — Engineers at Duke University have demonstrated a prot