News | Neuro Imaging | January 03, 2017

High-resolution Brain Scans Could Improve Concussion Detection

Magnetoencephalography used in Canadian study sees alterations in brain area connectivity not found in conventional imaging

magnetoencephalography, MEG, brain scans, concussion detection, Simon Fraser University, SFU study, PLOS Computational Biology

January 3, 2017 — Simon Fraser University researchers have found that high-resolution brain scans, coupled with computational analysis, could play a critical role in helping to detect concussions that conventional scans might miss.

In a study published in PLOS Computational Biology, Vasily Vakorin and Sam Doesburg show how magnetoencephalography (MEG), which maps interactions between regions of the brain, could detect greater levels of neural changes than typical clinical imaging tools such as magnetic resonance imaging (MRI) or computed tomography (CT) scans.

Qualified clinicians typically use those tools, along with other self-reporting measures such as headache or fatigue, to diagnose concussion. They also note that related conditions such as mild traumatic brain injury, often associated with football player collisions, do not appear on conventional scans.

"Changes in communication between brain areas, as detected by MEG, allowed us to detect concussion from individual scans, in situations where MRI or CT failed," said Vakorin. The researchers are scientists with the Behavioral and Cognitive Neuroscience Institute based at SFU, and SFU's ImageTech Lab, a new facility at Surrey Memorial Hospital. Its research-dedicated MEG and MRI scanners make the lab unique in western Canada.

The researchers took MEG scans of 41 men between 20-44 years of age. Half had been diagnosed with concussions within the past three months.

They found that concussions were associated with alterations in the interactions between different brain areas — in other words, there were observable changes in how areas of the brain communicate with one another.

The researchers say MEG offers an unprecedented combination of "excellent temporal and spatial resolution" for reading brain activity to better diagnose concussion where other methods fail.

Relationships between symptom severity and MEG-based classification also show that these methods may provide important measurements of changes in the brain during concussion recovery.

The researchers hope to refine their understanding of specific neural changes associated with concussions to further improve detection, treatment and recovery processes.

The research was funded by Defence Research and Development Canada (DRDC).

For more information: www.journals.plos.org/ploscompbiol

Related Content

RSNA 2017 Celebrates Innovation in Radiology
News | Imaging | January 15, 2018
January 15, 2018 — The Radiological Society of North America’s...
Smartphone Addiction Creates Imbalance in Brain
News | Mobile Devices | January 11, 2018
Researchers have found an imbalance in the brain chemistry of young people addicted to smartphones and the internet,...
Study Finds No Evidence that Gadolinium Causes Neurologic Harm

MR images through, A, C, E, basal ganglia and, B, D, F, posterior fossa at level of dentate nucleus. Images are shown for, A, B, control group patient 4, and the, C, D, first and, E, F, last examinations performed in contrast group patient 13. Regions of interest used in quantification of signal intensity are shown as dashed lines for globus pallidus (green), thalamus (blue), dentate nucleus (yellow), and pons (red).

News | Contrast Media | January 11, 2018
January 11, 2018 — There is no evidence that accumulation in the brain of the element gadolinium speeds cognitive dec
Neurofeedback Shows Promise in Treating Tinnitus

The standard approach to fMRI neurofeedback. Image courtesy of Matthew Sherwood, Ph.D.

News | Magnetic Resonance Imaging (MRI) | January 11, 2018
January 11, 2018 — Researchers using...
New Studies Show Brain Impact of Youth Football
News | Neuro Imaging | January 09, 2018
School-age football players with a history of concussion and high impact exposure undergo brain changes after one...
EchoPixel Showcases Next-Generation Surgical Planning With True 3-D Interactive Mixed Reality Software
News | Advanced Visualization | January 08, 2018
January 8, 2018 — EchoPixel showcased the latest version of True 3D, its interactive,...
WEBINAR: Neuroimaging from a Clinical Perspective, sponsored by Philips Healthcare. How to better manage your MRI department.
Webinar | Magnetic Resonance Imaging (MRI) | January 08, 2018
The CME credit webinar "Neuroimaging from a Clinical Perspective," will explain how imaging departments can become mo
FDA Announces Final Guidance and Webinar for Technical Considerations for 3-D-Printed Medical Devices
News | 3-D Printing | January 03, 2018
The U.S. Food and Drug Administration (FDA) issued the final version of the guidance, “Technical Considerations for...
MRI Shows Brain Differences Among ADHD Patients
News | Neuro Imaging | January 02, 2018
Information from brain magnetic resonance images (MRIs) can help identify people with attention deficit hyperactivity...
Migraines Linked to High Sodium Levels in Cerebrospinal Fluid
News | Neuro Imaging | December 29, 2017
Migraine sufferers have significantly higher sodium concentrations in their cerebrospinal fluid than people without the...
Overlay Init