News | Neuro Imaging | January 03, 2017

High-resolution Brain Scans Could Improve Concussion Detection

Magnetoencephalography used in Canadian study sees alterations in brain area connectivity not found in conventional imaging

magnetoencephalography, MEG, brain scans, concussion detection, Simon Fraser University, SFU study, PLOS Computational Biology

January 3, 2017 — Simon Fraser University researchers have found that high-resolution brain scans, coupled with computational analysis, could play a critical role in helping to detect concussions that conventional scans might miss.

In a study published in PLOS Computational Biology, Vasily Vakorin and Sam Doesburg show how magnetoencephalography (MEG), which maps interactions between regions of the brain, could detect greater levels of neural changes than typical clinical imaging tools such as magnetic resonance imaging (MRI) or computed tomography (CT) scans.

Qualified clinicians typically use those tools, along with other self-reporting measures such as headache or fatigue, to diagnose concussion. They also note that related conditions such as mild traumatic brain injury, often associated with football player collisions, do not appear on conventional scans.

"Changes in communication between brain areas, as detected by MEG, allowed us to detect concussion from individual scans, in situations where MRI or CT failed," said Vakorin. The researchers are scientists with the Behavioral and Cognitive Neuroscience Institute based at SFU, and SFU's ImageTech Lab, a new facility at Surrey Memorial Hospital. Its research-dedicated MEG and MRI scanners make the lab unique in western Canada.

The researchers took MEG scans of 41 men between 20-44 years of age. Half had been diagnosed with concussions within the past three months.

They found that concussions were associated with alterations in the interactions between different brain areas — in other words, there were observable changes in how areas of the brain communicate with one another.

The researchers say MEG offers an unprecedented combination of "excellent temporal and spatial resolution" for reading brain activity to better diagnose concussion where other methods fail.

Relationships between symptom severity and MEG-based classification also show that these methods may provide important measurements of changes in the brain during concussion recovery.

The researchers hope to refine their understanding of specific neural changes associated with concussions to further improve detection, treatment and recovery processes.

The research was funded by Defence Research and Development Canada (DRDC).

For more information: www.journals.plos.org/ploscompbiol

Related Content

Fovia and Predible Health Combine XStream HDVR with Deep Learning to Fight Cancer
News | Advanced Visualization | April 25, 2017
Fovia Inc. and Predible Health announced a new collaboration to combine high-quality imaging performance and accuracy...
Philips Showcases Newest MR-based Innovations at ISMRM 2017
News | Magnetic Resonance Imaging (MRI) | April 24, 2017
Philips announced that it will feature the company’s latest magnetic resonance (MR) solutions and neurology-focused...
SyntheticMR Myelination Quantification Feature Receives CE Mark
News | Magnetic Resonance Imaging (MRI) | April 19, 2017
April 19, 2017 — REMyDI (Rapid Estimation of Myelin for Diagnostic Imaging), first introduced by SyntheticMR AB at th
3-D-printed Model of Stenotic Intracranial Artery Enables Vessel-Wall MRI Standardization
News | 3-D Printing | April 18, 2017
April 18, 2017 — A collaboration between stroke neurologists at the Medical University of South Carolina (MUSC) and b
3-D Prints Compare Effectiveness of Top Surgical Techniques for Repairing Heel Deformity
News | 3-D Printing | April 18, 2017
Using 3-D models of a patient’s foot, investigators at Cedars-Sinai have found that the three leading procedures for...
fMRI, functional MRI, patience, imagination, neuroscience, Psychological Science journal, clinical study
News | Neuro Imaging | April 06, 2017
By using functional magnetic resonance imaging (fMRI) to look inside the brain, neuroscientists at the University of...
ContextVision, 3-D ultrasound, SkeletalView, patent, fetal skeleton viewing, RSNA 2017
News | Advanced Visualization | March 23, 2017
ContextVision recently received a patent approval on a new skeletal visualization technology for 3-D ultrasound.
diffusion weighted MRI, children, traumatic brain injury, TBI recovery, Neurology journal study
News | Magnetic Resonance Imaging (MRI) | March 21, 2017
A new imaging biomarker may help predict which children will take longer to recover from a traumatic brain injury (TBI...
Echopixel, True 3D Viewer, interactive virtual reality, pediatric surgery, increased clinical adoption
News | Advanced Visualization | March 21, 2017
EchoPixel recently announced progress in the clinical adoption of its True 3D virtual reality software in pediatric...
Technology | Clinical Decision Support | March 16, 2017
March 16, 2017 — MedyMatch Technology announced a collaboration with IBM  Watson Health to bring MedyMatch’s...
Overlay Init