News | Image Guided Radiation Therapy (IGRT) | June 19, 2017

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

MRI-guided radiation therapy system combines real-time tumor assessment with linear accelerator delivery

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

June 19, 2017 — The Henry Ford Cancer Institute is the first in Michigan – and first in the world – to offer patients advanced radiation therapy with the ViewRay MRIdian Linac system. The system uses a U.S. Food and Drug Administration (FDA)-approved real-time magnetic resonance imaging (MRI) and linear accelerator delivery for more precise and accurate radiation treatment.

The ViewRay MRIdian Linac is the world's first and only FDA-approved commercially available linear accelerator-based MRI-guided radiation therapy system that can image and treat patients simultaneously, according to Viewray. The FDA approved the company's next-generation model for use in February.

The same model is being installed at the Cancer Institute at Henry Ford Medical Center-Cottage in Grosse Pointe Farms. It will be ready for treating patients in July 2017.

Benjamin Movsas, M.D., chair of the Department of Radiation Oncology at the Cancer Institute and a national expert, said the system offers "game-changing technology" in radiation therapy.

"This is the future in our field," Movsas said. "This technology will allow us to optimize in real-time the delivery of radiation."

Movsas said while the system will be used to treat all types of cancers anywhere in the body, it is especially beneficial for tumors where there is typically movement during treatment, including tumors in the liver, pancreas, adrenal and lung. Other types of cancer this advanced system will deliver a new level of care to include breast, prostate, kidney and gynecologic cancers, among others.

Indrin Chetty, Ph.D., division head of Physics in Radiation Oncology, said the MRIdian Linac system further enhances radiation therapy with:

  • Personalized treatment. By continuously observing and assessing the patient's tumor and internal organs, clinicians can tailor treatment to each individual;
  • Precision and accuracy. High-quality images and continuous soft-tissue imaging are provided while the radiation beam is on; and
  • Real-time imaging. When clinicians can clearly see the target and watch where the radiation is being delivered, they are better able to adapt to changes in the patient's anatomy.

Over the years, technology has improved the accuracy of radiation treatment while protecting surrounding healthy tissue. However, trying to accommodate for the natural movement of a tumor and the body's internal organs during treatment has been elusive.

The ViewRay system combines the effectiveness of MRI, which produces high-quality images of organs and structures inside the body, with a linear accelerator to map out a therapy plan and deliver radiation at the intended target, while allowing for refinements to be made in real-time during treatment. The result is a more accurate, precise treatment.

For more information: www.viewray.com

Related Content

High-dose Radiation Effective for Men Whose Prostate Cancer Has Spread
News | Prostate Cancer | September 23, 2019
A randomized clinical trial of targeted, high-dose radiation for men with oligometastatic prostate cancer has shown the...
First Patients Treated With Machine Learning-generated Plans from RayStation 8B
News | Treatment Planning | September 23, 2019
The first-ever patient radiation therapy treatments generated with machine learning in the RayStation treatment...
An example of a treatment plan for radio-ablation of the heart to noninvasively treat cardiac arrhythmias. This concept is one of the key presentations at the 2019 ASTRO meeting. Image courtesy of Cyberheart. #ASTRO19 #ASTRO2019 #ASTRO

An example of a treatment plan for radio-ablation of the heart to noninvasively treat cardiac arrhythmias. This concept is one of the key presentations at the 2019 ASTRO meeting. Image courtesy of Cyberheart.

Feature | ASTRO | September 23, 2019
August 29, 2019 — The American Society for Radiation Oncology (ASTRO) announced th
Videos | Radiation Oncology | September 20, 2019
Anne Hubbard, MBA, director of health policy for ASTRO, explains the details and purpose of the proposed Radiation On
Videos | Radiation Therapy | September 20, 2019
ITN Associate Editor Jeff Zagoudis speaks with...
Aktina Showcases New Radiotherapy Patient Immobilization Solutions at ASTRO 2019
News | Patient Positioning Radiation Therapy | September 20, 2019
Aktina Medical introduced several new products at the 2019 American Society for Radiation Oncology (ASTRO) annual...
Varian Announces Multi-room Configuration for ProBeam 360 Proton Therapy System
News | Proton Therapy | September 20, 2019
Varian announced its ProBeam 360° proton therapy system is now available in a multi-room configuration. The ProBeam 360...
Anne Hubbard, MBA, director of health policy for the American Society for Radiation Oncology

Anne Hubbard, MBA, director of health policy for the American Society for Radiation Oncology (ASTRO), explains the details of the proposed radiation oncology alternative payment model (APM), and issues ASTRO has raised with the model, at the 2019 ASTRO annual meeting in Chicago.

News | Radiation Oncology | September 18, 2019
During its annual meeting in September, the American Society for Radiation Oncology (ASTRO) issued a response to the...
Radiation After Immunotherapy Improves Progression-free Survival for Some Metastatic Lung Cancer Patients
News | Lung Cancer | September 18, 2019
Adding precisely aimed, escalated doses of radiation after patients no longer respond to immunotherapy reinvigorates...
IBA Gathers Experts on Flash Irradiation During ASTRO
News | Proton Therapy | September 17, 2019
IBA (Ion Beam Applications SA, held its third Victoria Consortium Meeting focusing on Flash irradiation at the 2019...