News | Image Guided Radiation Therapy (IGRT) | June 19, 2017

MRI-guided radiation therapy system combines real-time tumor assessment with linear accelerator delivery

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

June 19, 2017 — The Henry Ford Cancer Institute is the first in Michigan – and first in the world – to offer patients advanced radiation therapy with the ViewRay MRIdian Linac system. The system uses a U.S. Food and Drug Administration (FDA)-approved real-time magnetic resonance imaging (MRI) and linear accelerator delivery for more precise and accurate radiation treatment.

The ViewRay MRIdian Linac is the world's first and only FDA-approved commercially available linear accelerator-based MRI-guided radiation therapy system that can image and treat patients simultaneously, according to Viewray. The FDA approved the company's next-generation model for use in February.

The same model is being installed at the Cancer Institute at Henry Ford Medical Center-Cottage in Grosse Pointe Farms. It will be ready for treating patients in July 2017.

Benjamin Movsas, M.D., chair of the Department of Radiation Oncology at the Cancer Institute and a national expert, said the system offers "game-changing technology" in radiation therapy.

"This is the future in our field," Movsas said. "This technology will allow us to optimize in real-time the delivery of radiation."

Movsas said while the system will be used to treat all types of cancers anywhere in the body, it is especially beneficial for tumors where there is typically movement during treatment, including tumors in the liver, pancreas, adrenal and lung. Other types of cancer this advanced system will deliver a new level of care to include breast, prostate, kidney and gynecologic cancers, among others.

Indrin Chetty, Ph.D., division head of Physics in Radiation Oncology, said the MRIdian Linac system further enhances radiation therapy with:

  • Personalized treatment. By continuously observing and assessing the patient's tumor and internal organs, clinicians can tailor treatment to each individual;
  • Precision and accuracy. High-quality images and continuous soft-tissue imaging are provided while the radiation beam is on; and
  • Real-time imaging. When clinicians can clearly see the target and watch where the radiation is being delivered, they are better able to adapt to changes in the patient's anatomy.

Over the years, technology has improved the accuracy of radiation treatment while protecting surrounding healthy tissue. However, trying to accommodate for the natural movement of a tumor and the body's internal organs during treatment has been elusive.

The ViewRay system combines the effectiveness of MRI, which produces high-quality images of organs and structures inside the body, with a linear accelerator to map out a therapy plan and deliver radiation at the intended target, while allowing for refinements to be made in real-time during treatment. The result is a more accurate, precise treatment.

For more information: www.viewray.com


Related Content

News | Radiation Therapy

Feb. 4, 2026 — On World Cancer Day (02.04.26), the American Society for Radiation Oncology (ASTRO) and the European ...

Time February 04, 2026
arrow
News | Radiopharmaceuticals and Tracers

Jan. 29, 2026 — The American Society for Radiation Oncology (ASTRO) has launched a national program creating Authorized ...

Time January 30, 2026
arrow
News | Radiation Oncology

Jan. 27, 2026 — Researchers at the Icahn School of Medicine at Mount Sinai, in collaboration with other leading ...

Time January 29, 2026
arrow
News | Radiology Education

Jan. 22, 2026—The American Roentgen Ray Society (ARRS) will host a live virtual symposium, "Medical Imaging for ...

Time January 28, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
News | Radiology Imaging

Jan. 21, 2026 — Cathpax, a spin-off of the Lemer Pax group that designs, develops and commercializes team-wide, full ...

Time January 22, 2026
arrow
News | Radiation Therapy

Jan. 16, 2026 — Elekta has announced that its Elekta Evo* CT-Linac has received 510(k) clearance from the U.S. Food and ...

Time January 16, 2026
arrow
News | Stroke

Dec. 12, 2025 — Hyperfine, Inc. has announced that it has received FDA clearance for a new multi-direction diffusion ...

Time December 15, 2025
arrow
News | Radiopharmaceuticals and Tracers

Dec. 11, 2025 — Telix Pharmaceuticals Ltd. has announced a strategic clinical collaboration with Varian, a Siemens ...

Time December 11, 2025
arrow
News | Artificial Intelligence

Dec. 1, 2025 — Researchers at the University of California, Berkeley and University of California, San Francisco have ...

Time December 10, 2025
arrow
Subscribe Now