News | Image Guided Radiation Therapy (IGRT) | June 19, 2017

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

MRI-guided radiation therapy system combines real-time tumor assessment with linear accelerator delivery

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

June 19, 2017 — The Henry Ford Cancer Institute is the first in Michigan – and first in the world – to offer patients advanced radiation therapy with the ViewRay MRIdian Linac system. The system uses a U.S. Food and Drug Administration (FDA)-approved real-time magnetic resonance imaging (MRI) and linear accelerator delivery for more precise and accurate radiation treatment.

The ViewRay MRIdian Linac is the world's first and only FDA-approved commercially available linear accelerator-based MRI-guided radiation therapy system that can image and treat patients simultaneously, according to Viewray. The FDA approved the company's next-generation model for use in February.

The same model is being installed at the Cancer Institute at Henry Ford Medical Center-Cottage in Grosse Pointe Farms. It will be ready for treating patients in July 2017.

Benjamin Movsas, M.D., chair of the Department of Radiation Oncology at the Cancer Institute and a national expert, said the system offers "game-changing technology" in radiation therapy.

"This is the future in our field," Movsas said. "This technology will allow us to optimize in real-time the delivery of radiation."

Movsas said while the system will be used to treat all types of cancers anywhere in the body, it is especially beneficial for tumors where there is typically movement during treatment, including tumors in the liver, pancreas, adrenal and lung. Other types of cancer this advanced system will deliver a new level of care to include breast, prostate, kidney and gynecologic cancers, among others.

Indrin Chetty, Ph.D., division head of Physics in Radiation Oncology, said the MRIdian Linac system further enhances radiation therapy with:

  • Personalized treatment. By continuously observing and assessing the patient's tumor and internal organs, clinicians can tailor treatment to each individual;
  • Precision and accuracy. High-quality images and continuous soft-tissue imaging are provided while the radiation beam is on; and
  • Real-time imaging. When clinicians can clearly see the target and watch where the radiation is being delivered, they are better able to adapt to changes in the patient's anatomy.

Over the years, technology has improved the accuracy of radiation treatment while protecting surrounding healthy tissue. However, trying to accommodate for the natural movement of a tumor and the body's internal organs during treatment has been elusive.

The ViewRay system combines the effectiveness of MRI, which produces high-quality images of organs and structures inside the body, with a linear accelerator to map out a therapy plan and deliver radiation at the intended target, while allowing for refinements to be made in real-time during treatment. The result is a more accurate, precise treatment.

For more information: www.viewray.com

Related Content

RaySearch Developing RayCommand Treatment Control System for U.K. Proton Therapy Facility
Technology | Radiation Therapy | December 10, 2018
RaySearch has decided to develop a treatment control system, RayCommand, to act as a link between its RayStation...
Youth Football Changes Nerve Fibers in Brain

Statistically significant clusters (red-colored) showing group differences (Control vs. Football) in white matter strain along the primary (F1) and secondary (F2) fibers. While body of corpus callosum (BBC) showed relative shrinkage in Football group, the other clusters showed relative stretching of fibers. PCR: Posterior Corona Radiata, PLIC: Posterior Limb of Internal Capsule, SCR: Superior Corona Radiata, SLF: Superior Longitudinal Fasciculus, SCC: Splenium of Corpus Callosum. Image courtesy of Kim et al.

News | Neuro Imaging | December 07, 2018
Magnetic resonance imaging (MRI) scans show repetitive blows to the head result in brain changes among youth football...
Siemens Healthineers Debuts Magnetom Altea 1.5T MRI Scanner
Technology | Magnetic Resonance Imaging (MRI) | December 06, 2018
During the 104th Scientific Assembly and Annual Meeting of the Radiological Society of North America (RSNA), Nov. 25-30...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
Mirada Medical Joins U.K. Consortium Exploring Healthcare AI
News | Artificial Intelligence | December 04, 2018
Mirada Medical, a leading global brand in medical imaging software, will form part of an artificial intelligence (AI)...
Sponsored Content | Videos | Radiation Oncology | November 30, 2018
Accuray's philosophy is to personalize treatments to exactly fit the patient.
Snoring Poses Greater Cardiac Risk to Women
News | Women's Health | November 29, 2018
Obstructive sleep apnea (OSA) and snoring may lead to earlier impairment of cardiac function in women than in men,...
Vital Showcases Enterprise Imaging Advances at RSNA 2018

Global Illumination from Vital Images

News | Enterprise Imaging | November 28, 2018
Vital, a Canon Group company, will highlight the latest additions to its enterprise imaging portfolio at the 2018...
Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

News | Contrast Media | November 27, 2018
Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in...