News | Image Guided Radiation Therapy (IGRT) | June 19, 2017

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

MRI-guided radiation therapy system combines real-time tumor assessment with linear accelerator delivery

Henry Ford Cancer Institute First in World to Install Viewray MRIdian Linac

June 19, 2017 — The Henry Ford Cancer Institute is the first in Michigan – and first in the world – to offer patients advanced radiation therapy with the ViewRay MRIdian Linac system. The system uses a U.S. Food and Drug Administration (FDA)-approved real-time magnetic resonance imaging (MRI) and linear accelerator delivery for more precise and accurate radiation treatment.

The ViewRay MRIdian Linac is the world's first and only FDA-approved commercially available linear accelerator-based MRI-guided radiation therapy system that can image and treat patients simultaneously, according to Viewray. The FDA approved the company's next-generation model for use in February.

The same model is being installed at the Cancer Institute at Henry Ford Medical Center-Cottage in Grosse Pointe Farms. It will be ready for treating patients in July 2017.

Benjamin Movsas, M.D., chair of the Department of Radiation Oncology at the Cancer Institute and a national expert, said the system offers "game-changing technology" in radiation therapy.

"This is the future in our field," Movsas said. "This technology will allow us to optimize in real-time the delivery of radiation."

Movsas said while the system will be used to treat all types of cancers anywhere in the body, it is especially beneficial for tumors where there is typically movement during treatment, including tumors in the liver, pancreas, adrenal and lung. Other types of cancer this advanced system will deliver a new level of care to include breast, prostate, kidney and gynecologic cancers, among others.

Indrin Chetty, Ph.D., division head of Physics in Radiation Oncology, said the MRIdian Linac system further enhances radiation therapy with:

  • Personalized treatment. By continuously observing and assessing the patient's tumor and internal organs, clinicians can tailor treatment to each individual;
  • Precision and accuracy. High-quality images and continuous soft-tissue imaging are provided while the radiation beam is on; and
  • Real-time imaging. When clinicians can clearly see the target and watch where the radiation is being delivered, they are better able to adapt to changes in the patient's anatomy.

Over the years, technology has improved the accuracy of radiation treatment while protecting surrounding healthy tissue. However, trying to accommodate for the natural movement of a tumor and the body's internal organs during treatment has been elusive.

The ViewRay system combines the effectiveness of MRI, which produces high-quality images of organs and structures inside the body, with a linear accelerator to map out a therapy plan and deliver radiation at the intended target, while allowing for refinements to be made in real-time during treatment. The result is a more accurate, precise treatment.

For more information: www.viewray.com

Related Content

Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

MERCK and RefleXion Medical announced a collaboration to evaluate KETRUDA (immunotherapy) with biology-guided radiotherapy - BgRT -  a new radiation machine developed to treat all stages of cancer.

 

News | Radiation Therapy | June 01, 2020
June 1, 2020 — RefleXion Medical, a therape
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
United Imaging's uMR OMEGA is designed to provide greater access to magnetic resonance imaging (MRI) with the world’s first ultra-wide 75-cm bore 3T MRI.
News | Magnetic Resonance Imaging (MRI) | May 27, 2020
May 27, 2020 — United Imaging's...
Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Miami Cancer Institute’s Proton Therapy Center is the first in South Florida and the region’s top destination for this leading-edge treatment. Proton therapy is an advanced form of radiation therapy that uses pencil beam scanning (PBS) technology.

Feature | Proton Therapy | May 27, 2020 | By Minesh Mehta, M.D.
Radiation therapy has advanced significantly in the last few decades as a result of a continued technological revolut
Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve.

Technology becomes a state-of-the-art tool when it gets exposed to a structure that constantly tests it and allows it to evolve. Getty Images

Feature | Oncology Information Management Systems (OIMS) | May 27, 2020 | By Reshu Gupta
In the history of medicine, researchers have found cures for many diseases, but cancer has been elusive.
A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue

A new technique developed by researchers at UC Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The team created a probe that generates two magnetic resonance signals that suppress each other until they reach the target, at which point they both increase contrast between the tumor and surrounding tissue. Image courtesy of Xiandoing Xue, UC Davis

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers at the University of California, Davis offers a...
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo. Gadolinium is contained in contrast agents given to patients undergoing medical magnetic resonance imaging (MRI) scans, and it has been shown in labs to become toxic when exposed to ultraviolet rays. The researchers found significantly elevated levels, particularly near water treatment plants, highlighting the need for new public policy and removal technologies as MRI become even more commonp

Samples were taken along rivers around Tokyo. Measurements of rare earth element quantities indicate a clearly elevated amount of gadolinium compared to that in natural shale. Graphics courtesy of Tokyo Metropolitan University

News | Magnetic Resonance Imaging (MRI) | May 26, 2020
May 26, 2020 — Researchers from Tokyo Metropolitan...
Despite facing challenges such as limited access to personal protective equipment (PPE) following the COVID-19 outbreak, radiation oncology clinics quickly implemented safety and process enhancements that allowed them to continue caring for cancer patients, according to a new national survey from the American Society for Radiation Oncology (ASTRO).

Getty Images

News | Coronavirus (COVID-19) | May 21, 2020
May 21, 2020 — Despite facing challenges such as limited access to...