Technology | Treatment Planning | November 20, 2015

GE Introduces Accuracy for Radiation Therapy Planning with Discovery RT

CT simulator introduced at ASTRO offers improved planning for oncology patients

GE Healthcare, Discovery RT, CT simulation, radiation therapy, treatment planning, RSNA 2015, ASTRO 2015

Image courtesy of GE Healthcare

November 20, 2015 — GE Healthcare introduced the Discovery RT, a new advanced radiation therapy planning computed tomography (CT) system at the 57th annual American Society for Radiation Oncology (ASTRO) meeting in San Antonio, Texas, Oct. 18-21.

Discovery RT is a CT simulator that that enables flexible patient positioning, software to address challenges presented by patient motion and metal, precise treatment planning and an efficient workflow. CT simulation is used to duplicate the radiation-treatment machine in terms of its geometric, mechanical and optical properties by creating a three-dimensional image dataset. This data is then used by the clinicians to localize the tumor and plan treatment without physically having the patient present.

Discovery RT boasts an 80 cm bore with an 80 cm field-of-view, enabled by Max Field of View* (MaxFOV), a new feature of this system. MaxFOV delivers CT images with specified spatial and density values to the edge of the bore — an industry first, according to the company. The large bore and MaxFOV enables the flexibility to position the patients in different treatment positions and then to image the full patient volume for more accurate simulation and therapy planning.

GE Healthcare’s Smart Deviceless 4-D technology delivers workflow efficiency and patient comfort in 4-D motion assessment. Smart Deviceless 4-D provides and displays images of all phases of a breathing cycle, which helps to simplify the motion assessment workflow. Deviceless 4-D assesses motion without an external respiratory gating device, another unique feature of the Discovery RT system designed to improve workflow and patient comfort with no compromise to accuracy and precision.

The Discovery RT combines Smart Deviceless 4-D technology with Smart Metal Artifact Reduction (MAR) to address two of treatment planning’s biggest challenges – the ability to outsmart metal and motion. When utilizing CT scans, clinicians are often challenged by image distortions caused by high-z metals in the body such as hip prosthesis, screws or dental fillings. Metals often generate streak-like artifacts in CT scans, making it difficult to clearly delineate between tumors and healthy tissue. Smart MAR addresses this challenge with a three-stage, projection-based method designed to address both causes of metal artifacts – photon starvation and beam hardening. This automated approach is designed to reveal anatomic details obscured by metal artifacts.

The GE MR Radiation Oncology Suite is another addition to the complete portfolio of radiation oncology solutions from GE Healthcare. The suite includes a full complement of coils, positioning devices and pulse sequences to get voxels the right size in treatment position that can improve accuracy for treatment planning. In addition to the MR (magnetic resonance) oncology suite, the Signa PET/MR, which has been commercially available in the United States since November 2014, offers time-of-flight positron emission tomography (PET) reconstruction with high sensitivity to explore lower PET dose opportunities. The Signa PET/MR is available with MR Silenz, part of SilentScan, with zero TE capability. Zero TE allows development in the area of bone segmentation, which has potential uses for MR simulation.

GE Healthcare also offers ExAblate, an MR-guided focused ultrasound that delivers high intensity focused ultrasound that thermally ablates targeted tissue using MRI to identify and target tumors while providing temperature monitoring of the treated tissue in real time. Also on display at ASTRO, the Discovery PET/CT portfolio features advanced motion management and Q.Clear, an exclusive reconstruction engine that improves up to two times the quantitation accuracy (SUVmean) and image quality (SNR), aimed at a more accurate treatment response assessment.

Discovery RT and MaxFOV are not yet CE marked.

For more information: www.gehealthcare.com

Related Content

Doctor-Patient Discussions Neglect Potential Harms of Lung Cancer Screening
News | Lung Cancer | August 15, 2018
August 15, 2018 — Although national guidelines advise doctors to discuss the benefits and harms of...
Videos | Radiation Therapy | August 13, 2018
ITN Editor Dave Fornell takes a tour of some of the innovative new technologies on the expo floor at the 2018 America
ACR LI-RADS Steering Committee Releases New Version of CT/MRI LI-RADS
News | Clinical Decision Support | August 13, 2018
August 13, 2018 — The American College of Radiology Liver Imaging Reporting and Data System (LI-RADS) steering commit
Videos | Radiation Therapy | August 13, 2018
A discussion with Mahadevappa Mahesh, MS, Ph.D., FAAPM, FACR, FACMP, FSCCT, professor of radiology and cardiology and
Videos | Proton Therapy | August 10, 2018
A discussion with Matthew Freeman, Ph.D., scientist at Los Alamos National Laboratory, New Mexico.
Videos | Radiomics | August 09, 2018
A discussion with Martin Vallieres, Ph.D., post-doctoral fellow at McGill University, Montreal, Canada.
Aidoc Receives FDA Clearance for AI Detection of Acute Intracranial Hemorrhage
Technology | Clinical Decision Support | August 08, 2018
Aidoc announced that it was granted U.S. Food and Drug Administration (FDA) clearance for the first product of its...
Videos | AAPM | August 03, 2018
Ehsan Samei, Ph.D., DABR, FAAPM, FSPIE, director of the Duke Un...
Videos | Artificial Intelligence | August 01, 2018
A discussion with Steve Jiang, Ph.D., director of the medical...
Videos | Radiation Therapy | August 01, 2018
This is an example of how Cherenkov radiation glow can be collected with image intensifier cameras during radiotherap
Overlay Init