News | May 05, 2011

GE Develops New Technique to Reduce Time, Cost to Produce Ultrasound Components

May 5, 2011 – GE scientists are already studying additive manufacturing techniques to reduce labor and costs on ultrasound devices. Here, the key aspect is the transducer, which is expensive to produce using current manufacturing techniques.

Michelangelo once described his technique as follows: “I saw the angel in the marble, and carved until I set him free.” For decades, the same idea has fueled the manufacturing of tiny, delicate instruments: you take a block of material and cut microscopic grooves in each piece, shaving away the excess one by one until it’s complete. The process works, but it takes time and money, making the equipment incredibly expensive to produce.

Recently, scientists around the world have been experimenting with a new technique known as “additive manufacturing.” Rather than taking a block of metal and shaving or cutting into it, researchers are growing the device from the ground up, a process also known as 3-D printing.
This week, GE Global Research announced it has created a new lab at its upstate New York headquarters dedicated entirely to additive manufacturing. Since GE produces a number of small, sophisticated devices, the lab’s research may cut down on an expensive, time-consuming process.

The process uses software to feed an instrument template into a 3-D printer, layering thin filaments of metal atop one another into the template’s pattern. Since no wasted shavings are produced, the process substantially lowers the cost of raw material. Plus, manufacturers no longer have to build an expensive physical template to create the microcuts – instead, they just write the software code, and the printer does the rest.

GE scientists are already studying additive manufacturing techniques to cut costs on ultrasound transducers. As building ultrasound equipment has grown less expensive and faster, costs of producing the tiny metal transducer has stayed stubbornly high – each transducer has tiny intricate patterns across it. Applying new additive techniques, which can print these intricate patterns on the probe all at once, can save hours of cutting and refinement.

To create the transducer components, a thin layer of ceramic slurry is spread on a plate, the system templates the form to be created and an ultraviolet light is used to fix the form in the slurry.

“For as long as the world has been making things, manufacturing has been a game of subtraction where you cut and machine parts down into the product you want,” said Prabhjot Singh, a mechanical engineer and project leader on the ultrasound project. “With new additive manufacturing processes, the traditional ways of manufacturing are being turned upside down.”

For more information: www.gereports.com/smart-industry-the-additive-manufacturing-revolution/

Related Content

Triton College Launching Vascular Technology in Sonography Certificate Program
News | Ultrasound Imaging | January 09, 2019
Starting in spring 2019, Triton College’s Vascular Technology in Sonography Certificate Program will help working...
Breast Cancer Patients Have Less Heart Damage With Heart Drug and Trastuzumab
News | Cardio-oncology | January 03, 2019
Breast cancer patients who take a heart drug at the same time as trastuzumab have less heart damage, according to a...
Fujifilm SonoSite Showcases Point-of-care Ultrasound Portfolio At RSNA 2018
News | Ultrasound Imaging | December 20, 2018
Fujifilm SonoSite Inc. recently present its complete portfolio of point-of-care ultrasound (POCUS) systems at the 2018...
Opto-Acoustic Imaging Helps Differentiate Breast Cancer Molecular Subtypes
News | Ultrasound Women's Health | December 20, 2018
Seno Medical Instruments Inc. (Seno Medical) reported results of a study demonstrating that morphologic and functional...
Sponsored Content | Videos | Ultrasound Imaging | December 14, 2018
Based on Mindray’s Living Technology, the Resona 7 (Sapphire), ZS3 (Diamond) and TE7 (Crystal) new ultrasound upgrades...
Hitachi Medical Systems Europe Introduces Third-Generation Intelligent Vector Flow Mapping
News | Cardiovascular Ultrasound | December 07, 2018
Hitachi Medical Systems Europe introduced what it calls the next level of intelligent Vector Flow Mapping (iVFM) at...
GE Healthcare Unveils New Applications and Smart Devices Built on Edison Platform
Technology | Artificial Intelligence | December 05, 2018
GE Healthcare recently announced new applications and smart devices built on Edison – a platform that helps accelerate...
GE Healthcare Introduces Invenia ABUS 2.0
Technology | Ultrasound Women's Health | December 03, 2018
GE Healthcare recently launched the Invenia automated breast ultrasound (ABUS) 2.0 system in the United States. This...
Videos | Ultrasound Imaging | November 28, 2018
This is an example of the new Fetal HQ heart and vascular software from GE Healthcare for fetal ultrasound.
Clarius Mobile Health Announces Clarius AI Collective Intelligence Ultrasound Platform
News | Ultrasound Imaging | November 21, 2018
Clarius Mobile Health will announce a new collective intelligence ultrasound platform at this year's Radiological...