News | Digital Radiography (DR) | November 21, 2018

Fujifilm Unveils Two New Digital Radiography Detectors at RSNA 2018

New features include single-exposure energy subtraction and next-generation X-ray room retrofit detectors

Fujifilm Unveils Two New Digital Radiography Detectors at RSNA 2018

November 21, 2018 — Fujifilm Medical Systems U.S.A. Inc. announced that it will add two new digital radiography (DR) detectors — the Calneo Dual (available only in Japan) and the FDR ES — to its portfolio of digital radiography solutions on display at the annual meeting of the Radiological Society of North America (RSNA), Nov. 25-30 in Chicago. At the event, Fujifilm will also offer a glimpse into the future of DR detector technologies with an under-the-cover, inside-view prototype display.

The Calneo Dual is Fujifilm's newest development in DR technology. The 17x17" standard cassette-sized detector features two sensitivity capture layers coupled with Fujifilm intelligent energy subtraction processing. A single exposure produces three images; traditional, soft tissue only and bone-only views. These distinctly different images can be utilized for visualizing or tracking of lung cancer nodules. The dual capture layer design yields higher definition general X-ray images, enhancing separation accuracy of bone detail and soft tissue.

At RSNA, Fujifilm will also debut its FDR ES detector. This next-generation X-ray room retrofit solution is designed with the conveniences of Fujifilm DR image acquisition. The light, portable detectors are packed with all the benefits of Fujifilm's high sensitivity detector technologies and the latest refinements in image processing. Optimized for existing X-ray room equipment, these detectors feature simplified integration for a more affordable DR retrofit without sacrificing dose, workflow and image quality performance.

In addition to these latest and most advanced detectors, Fujifilm will showcase its comprehensive line of DR detectors and mobile DR solutions to suit the needs of imaging facilities large and small.

For more information: www.fujimed.com

Related Content

#DDR allows #clinicians to observe movement like never before. This enhanced version of a standard digital radiographic system can acquire up to 15 sequential #radiographs per second resulting in 20 seconds of motion and multiple individual #radiographic images. #DDR is not fluoroscopy; it is #cineradiography, or #Xray that moves.

DDR allows clinicians to observe movement like never before. This enhanced version of a standard digital radiographic system can acquire up to 15 sequential radiographs per second resulting in 20 seconds of motion and multiple individual radiographic images. DDR is not fluoroscopy; it is cineradiography, or X-ray that moves. The resulting images provide clinicians with a 4-D data set (a video) that depicts physiological movement. 

Sponsored Content | Case Study | Digital Radiography (DR) | May 05, 2021
Musculoskeletal injuries can be difficult to diagnose with a traditional X-ray because X-rays only reveal a static im
SmartXR uses a unique combination of hardware and AI-powered software to lighten radiographers’ workloads and provide image acquisition support.

SmartXR uses a unique combination of hardware and AI-powered software to lighten radiographers’ workloads and provide image acquisition support. 

Feature | Digital Radiography (DR) | May 04, 2021 | By Melinda Taschetta-Millane
The COVID-19 pandemic brought about an uptick in
A 63-year-old multiple #myeloma patient, with skeletal pain. New #FDG avid axillary #lymphadenopathy 62 days (9 weeks) after second #mRNA #vaccination dose. Image used with permission of the Radiological Society of North America (#RSNA)

A 63-year-old multiple myeloma patient, with skeletal pain. New FDG avid axillary lymphadenopathy 62 days (9 weeks) after second mRNA vaccination dose. Image used with permission of the Radiological Society of North America (RSNA)

Feature | Coronavirus (COVID-19) | April 29, 2021 | By Melinda Taschetta-Millane
Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of Radiological Society of North America

Overview of the scaphoid fracture detection pipeline, which consisted of a segmentation and detection convolutional neural network (CNN). A class activation map is calculated and visualized as a heatmap for fracture localization. Image courtesy of the Radiological Society of North America

News | Artificial Intelligence | April 28, 2021
April 28, 2021 — An automated system that uses...
Examples of axial FLAIR sequences from studies within dataset A. From left to right: a patient with a 'likely normal' brain; a patient presenting an intraparenchymal hemorrhage within the right temporal lobe; a patient presenting an acute infarct of the inferior division of the right middle cerebral artery; and a patient with known neurocysticercosis presenting a rounded cystic lesion in the left middle frontal gyrus. Image courtesy of Radiological Society of North America

Examples of axial FLAIR sequences from studies within dataset A. From left to right: a patient with a 'likely normal' brain; a patient presenting an intraparenchymal hemorrhage within the right temporal lobe; a patient presenting an acute infarct of the inferior division of the right middle cerebral artery; and a patient with known neurocysticercosis presenting a rounded cystic lesion in the left middle frontal gyrus. Image courtesy of Radiological Society of North America

News | Artificial Intelligence | April 22, 2021
April 22, 2021 — An artificial intellige...
Spectral DLR enables improved assessment of lumen stenosis in the presence of calcified plaque. Interactive monochromatic image display enables improved opacification of the injected contrast with low keV images and reduced calcium blooming artifacts with high keV images

Spectral DLR enables improved assessment of lumen stenosis in the presence of calcified plaque. Interactive monochromatic image display enables improved opacification of the injected contrast with low keV images and reduced calcium blooming artifacts with high keV images. The range of monochromatic energy levels (35-135 keV) can be visualized in real time through an image slider in the application that can be integrated in to a PACS.

News | Cardiac Imaging | April 21, 2021
April 21, 2021 — Meeting the growing cardiovascular needs of healthcare providers today, ...
Low-dose #CT #lung #scans are used to #screen for #lung_cancer in high-risk people such as heavy #smokers

Getty Images

News | Lung Imaging | April 16, 2021
April 17, 2021 — A deep learning algorithm accurately predicts the risk of death from...
#SiemensHealthineers #Varian #Siemens The transformative combination accelerates the company’s impact on #global #healthcare and establishes a strong partner for #customers and #patients along the entire #cancer care continuum and for many of the most threatening #diseases
News | Radiology Business | April 15, 2021
April 15, 2021 — Siemens Healthineers AG an