Technology | Mammography | December 07, 2018

FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis

Artificial intelligence-based technology improves cancer detection rates 8 percent on average, decreases unnecessary patient recalls 7 percent

FDA Clears iCAD's ProFound AI for Digital Breast Tomosynthesis

December 7, 2018 — iCAD Inc. announced clearance by the U.S. Food and Drug Administration (FDA) for their latest, deep-learning, cancer detection software solution for digital breast tomosynthesis (DBT), ProFound AI. The solution built on artificial intelligence (AI) is now available to healthcare facilities in the U.S.

The FDA clearance is based on positive clinical results from a large reader study completed earlier this year and presented at the 2018 Radiological Society of North America (RSNA) annual meeting, Nov. 25-30 in Chicago. The research was performed with 24 radiologists who read 260 tomosynthesis cases both with and without iCAD’s ProFound AI solution. The findings show increased cancer detection rates, reduced false positive rates and patient recalls, and a significant decrease in interpretation times.

“This technology shows tremendous promise in assisting radiologists in detecting cancers, reducing recalls and increasing efficiency when reading tomosynthesis studies,” said Emily Conant, M.D., professor and chief, Division of Breast Imaging, vice chair of faculty development, Department of Radiology at the Hospital of the University of Pennsylvania. “Clinical data shows that when tomosynthesis readers use the ProFound AI algorithm, case-level sensitivity is improved by 8 percent on average and reading times are significantly decreased. Radiologists with various levels of expertise may benefit from this AI-driven technology when reading large tomosynthesis data sets.”

ProFound AI is a high-performance, deep-learning, cancer detection and workflow solution for DBT, delivering improvement of cancer detection rates by an average of 8 percent and decreasing unnecessary patient recall rates by an average of 7 percent. The new technology is trained to detect malignant soft-tissue densities and calcifications. It also provides radiologists with scoring information representing the likelihood that a detection or case is malignant based on the large dataset of clinical images used to train the algorithm.

In addition to improving clinical performance related to breast cancer detection and false positive rates, study results showed ProFound AI can reduce radiologists’ reading time by more than 50 percent on average. An increase in reading time has been a significant challenge for radiologists when moving from 2-D to 3-D mammography.

The solution is currently available for use with - DBT systems in the U.S., Canada and Europe.

For more information: www.icadmed.com

Related Content

ringing the cancer bell can do more harm than good, says an ASTRO study

Image courtesy of ASTRO

News | Radiation Oncology | January 27, 2020
January 27, 2020 — It's a scene that some cancer patients dream about: they celebrate the end of a course of radiatio
A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast

A 50-y-old postmenopausal woman with fibroadenoma (arrows) in left breast. (A) Unenhanced fat-saturated T1-weighted MRI shows extreme amount of FGT (ACR d). (B) Moderate BPE is seen on dynamic contrast-enhanced MRI at 90 s. (C) Mean ADC of breast parenchyma of contralateral breast on diffusion-weighted imaging with ADC mapping is 1.5 × 10?3 mm2/s. (D) On 18F-FDG PET/CT, lesion is not 18F-FDG-avid, and BPU of normal breast parenchyma is relatively high, with SUVmax of 3.2. Photo courtesy of K Pinker, et al., Medical University of Vienna, Vienna, Austria

News | PET-MRI | January 27, 2020
January 27, 2020 — Researchers have identified several potentially useful...

Image by Adam Radosavljevic from Pixabay 

News | Radiology Business | January 27, 2020
January 27, 2020 —  Hg, a specialist private equity investor focused on software and service businesses, announced th
Sponsored Content | Videos | Mammography | January 24, 2020
Imaging Technology News Contributing Editor Greg Freiherr interviewed...
he U.S. Food and Drug Administration (FDA) has issued a final order to reclassify medical image analyzers applied to mammography breast cancer, ultrasound breast lesions, radiograph lung nodules and radiograph dental caries detection, postamendments class III devices (regulated under product code MYN), into class II (special controls), subject to premarket notification

Image courtesy of iCAD

News | Computer-Aided Detection Software | January 22, 2020
January 22, 2020 — The U.S.
Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Hitachi Healthcare Americas announced that it will create a new dedicated research and development facility within its North American headquarters facility in Twinsburg, Ohio
News | Radiology Business | January 21, 2020
January 21, 2020 — Hitachi Healthcare Americas announced that it will create a new dedicated research and development
Virtual reality during chemotherapy has been shown to improve breast cancer patients’ quality of life during the most stressful treatments
News | Virtual and Augmented Reality | January 21, 2020
January 21, 2020 — Virtual reality during chemotherapy has been shown to improve...