Technology | Clinical Decision Support | February 14, 2018

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

Viz.AI Contact application uses artificial intelligence algorithm to analyze CT images for stroke indicators; approval paves way for future computer-aided triage software devices

FDA Clears First AI-Powered Clinical Decision Support Software for Stroke

February 14, 2018 — The U.S. Food and Drug Administration (FDA) announced marketing clearance for Viz.AI’s Contact application, the first artificial intelligence (AI)-based clinical decision support (CDS) solution cleared for sale in the U.S. Viz.AI Contact is designed to analyze computed tomography (CT) results that may notify providers of a potential stroke in their patients.

A stroke occurs if the flow of oxygen-rich blood to a portion of the brain is blocked, also known as an occlusion. According to the Centers for Disease Control and Prevention, stroke is the fifth leading cause of death in the U.S. and is a major cause of serious disability for adults. About 795,000 people in the U.S. have a stroke each year.

“Strokes can cause serious and irreversible damage to patients. The software device could benefit patients by notifying a specialist earlier thereby decreasing the time to treatment. Faster treatment may lessen the extent or progression of a stroke,” said Robert Ochs, Ph.D., acting deputy director for radiological health, Office of In Vitro Diagnostics and Radiological Health in the FDA’s Center for Devices and Radiological Health.

The Viz.AI Contact application is a computer-aided triage software that uses an artificial intelligence algorithm to analyze images for indicators associated with a stroke. These types of algorithms can assist providers in identifying the most appropriate treatment plan for a patient’s disease or condition. The FDA is currently creating a regulatory framework for these products that encourages developers to create, adapt and expand the functionalities of their software to aid providers in diagnosing and treating diseases and conditions.

The Viz.AI Contact application is designed to analyze CT images of the brain and send a text notification to a neurovascular specialist if a suspected large vessel occlusion (LVO) has been identified. The algorithm will automatically notify the specialist during the same time the first-line provider is conducting a standard review of the images, potentially involving the specialist sooner than the usual standard of care in which patients wait for a radiologist to review CT images and notify a neurovascular specialist. The notification can be sent to a mobile device, such as a smartphone or tablet, but the specialist still needs to review the images on a clinical workstation.

The Viz.AI Contact application is intended to be used by neurovascular specialists, such as vascular neurologists, neuro-interventional specialists or other professionals with similar training. The application is limited to analysis of imaging data and should not be used as a replacement of a full patient evaluation or solely relied upon to make or confirm a diagnosis.

The company submitted a retrospective study of 300 CT images that assessed the independent performance of the image analysis algorithm and notification functionality of the Viz.AI Contact application against the performance of two trained neuro-radiologists for the detection of large vessel blockages in the brain. Real-world evidence was used with a clinical study to demonstrate that the application could notify a neurovascular specialist sooner in cases where a blockage was suspected. The Viz.ai LVO Stroke Platform obtained an AUC of 0.91, identifying LVOs and alerting the relevant specialist with 90 percent sensitivity and specificity, and a median scan to notification time of under 6 minutes. In over 95 percent of cases, the automatic notifications demonstrated faster notification of the specialist, saving between 6 and 206 minutes, with an average time saving of 52 minutes.

The Viz.AI Contact application was reviewed through the De Novo premarket review pathway, a regulatory pathway for some new types of medical devices that are low to moderate risk and have no legally marketed predicate device to base a determination of substantial equivalence. This action also creates a new regulatory classification, which means that subsequent computer-aided triage software devices with the same medical imaging intended use may go through the FDA’s premarket 510(k) notification process, whereby devices can obtain marketing authorization by demonstrating substantial equivalence to a predicate device.

For more information: www.viz.ai

Related Artificial Intelligence Content

Technology Report: Artificial Intelligence 2017

Why AI By Any Name Is Sweet For Radiology

VIDEO: Examples of How Artificial Intelligence Will Improve Medical Imaging

VIDEO: Deep Learning is Key Technology Trend at RSNA 2017

Machine Learning Concerns Discussed at RSNA/AAPM Symposium

 

Related Content

Of all the buzzwords one would have guessed would dominate 2020, few expected it to be “virtual”. We have been virtualizing various aspects of our lives for many years, but the circumstances of this one has moved almost all of our lives into the virtual realm.

Getty Images

Feature | Radiology Education | September 18, 2020 | By Jef Williams
Of all the buzzwords one would have guessed would dominate 2020, few expected it to be “virtual”.
As the silos of data and diagnostic imaging PACS systems are being collapsed and secured, the modular enterprise imaging platform approach is gaining significance, offering systemness and security
Feature | Coronavirus (COVID-19) | September 18, 2020 | By Anjum M. Ahmed, M.D., MBBS, MBA, MIS
COVID-19 is now everywhere, and these are the lo
Cloud and cloud-native architecture is the future for computing solutions in EI applications

Getty Images

Feature | Enterprise Imaging | September 18, 2020 | By Henri “Rik” Premo
With over five years of presence in the rapidly expanding...
News | Artificial Intelligence | September 16, 2020
September 16, 2020 — Konica Minolta Healthcare Americas, Inc.
Change Healthcare announced innovative new artificial intelligence (AI) models, trained by expert physicians, which extract meaningful diagnostic information from text in EHRs. The first application of this technology will be within the InterQual AutoReview solution, which automates medical necessity reviews using real-time data from EHRs.
News | Artificial Intelligence | September 14, 2020
September 14, 2020 — Change Healthcare announced innovative new...
The National Imaging Informatics Course-Radiology (NIIC-RAD) Term 1 will be held online September 28 - October 2, 2020. NIIC-RAD is made possible through a partnership between the Radiological Society of North America (RSNA) and the Society for Imaging Informatics in Medicine (SIIM)

Getty Images

News | Radiology Education | September 11, 2020
September 11, 2020 — The...
The Radiological Society of North America (RSNA) has launched its fourth annual artificial intelligence (AI) challenge, a competition among researchers to create applications that perform a clearly defined clinical task according to specified performance measures. The challenge for competitors this year is to create machine-learning algorithms to detect and characterize instances of pulmonary embolism.

Getty Images

News | Artificial Intelligence | September 11, 2020
September 11, 2020 — The Radiological Society of North America (RSNA...
Six months after deployment, the no-show rate of the predictive model was 15.9%, compared with 19.3% in the preceding 12-month preintervention period — corresponding to a 17.2% improvement from the baseline no-show rate (p < 0.0001). The no-show rates of contactable and noncontactable patients in the group at high risk of appointment no-shows as predicted by the model were 17.5% and 40.3%, respectively (p < 0.0001).

Weekly outpatient MRI appointment no-show rates for 1 year before (19.3%) and 6 months after (15.9%) implementation of intervention measures in March 2019, as guided by XGBoost prediction model. Squares denote data points. Courtesy of the  American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Artificial Intelligence | September 10, 2020
September 10, 2020 — According to ARRS’