News | Computed Tomography (CT) | June 14, 2021

Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan

Rensselaer algorithm can identify risk of cardiovascular disease using lung cancer scan #CT

June 14, 2021 — Heart disease and cancer are the leading causes of death in the United States, and it’s increasingly understood that they share common risk factors, including tobacco use, diet, blood pressure, and obesity. Thus, a diagnostic tool that could screen for cardiovascular disease while a patient is already being screened for cancer, has the potential to expedite a diagnosis, accelerate treatment, and improve patient outcomes. 

In research published today in Nature Communications, a team of engineers from Rensselaer Polytechnic Institute and clinicians from Massachusetts General Hospital developed a deep learning algorithm that can help assess a patient’s risk of cardiovascular disease with the same low-dose computerized tomography (CT) scan used to screen for lung cancer. This approach paves the way for more efficient, more cost-effective, and lower radiation diagnoses, without requiring patients to undergo a second CT scan. 

“In this paper, we demonstrate very good performance of a deep learning algorithm in identifying patients with cardiovascular diseases and predicting their mortality risks, which shows promise in converting lung cancer screening low-dose CT into a dual screening tool,” said Pingkun Yan, an assistant professor of biomedical engineering and member of the Center for Biotechnology and Interdisciplinary Studies (CBIS) at Rensselaer.

Numerous hurdles had to be overcome in order to make this dual screening possible. Low-dose CT images tend to have lower image quality and higher noise, making the features within an image harder to see. Using a large dataset from the National Lung Screening Trial (NLST), Yan and his team used data from more than 30,000 low-dose CT images to develop, train, and validate a deep learning algorithm capable of filtering out unwanted artifacts and noise, and extracting features needed for diagnosis. Researchers validated the algorithm using an additional 2,085 NLST images.

The Rensselaer team also partnered with Massachusetts General Hospital, where researchers were able to test this deep learning approach against state-of-the-art scans and the expertise of the hospital’s radiologists. The Rensselaer-developed algorithm, Yan said, not only proved to be highly effective in analyzing the risk of cardiovascular disease in high-risk patients using low-dose CT scans, but it also proved to be equally effective as radiologists in analyzing those images. In addition, the algorithm closely mimicked the performance of dedicated cardiac CT scans when it was tested on an independent dataset collected from 335 patients at Massachusetts General Hospital.

“This innovative research is a prime example of the ways in which bioimaging and artificial intelligence can be combined to improve and deliver patient care with greater precision and safety,” said Deepak Vashishth, the director of CBIS.

Yan was joined in this work by Ge Wang, an endowed chair professor of biomedical engineering at Rensselaer and fellow member of CBIS. The Rensselaer team was joined by Dr. Mannudeep K. Kalra, an attending radiologist at Massachusetts General Hospital and professor of radiology with Harvard Medical School. This research was funded by the National Institutes of Health National Heart, Lung, and Blood Institute.  

For more information: www.rpi.edu

Related lung and heart disease content:

Lung Cancer Screening Predicts Risk of Death from Heart Disease

Low-dose CT for Lung Cancer Screening: Benefit Outweighs Potential Harm

AI Analysis Can Improve Lung Cancer Detection on Chest Radiographs

Experts Recommend Shared Patient - Doctor Decision-making Prior to Lung Cancer Screening


Related Content

Feature | Radiology Imaging | By Melinda Taschetta-Millane

It's been a fruitful month for itnonline.com! Here's a look at what ITN viewers found to be most interesting during the ...

Time June 01, 2023
arrow
News | Artificial Intelligence

May 31, 2023 — GE HealthCare announced US FDA 510(k) clearance of Precision DL – a new, revolutionary deep learning ...

Time May 31, 2023
arrow
News | Radiology Business

May 30, 2023 — Strategic Radiology (SR) welcomed 23-radiologist Radiology Associates of Eugene, OR, to the national ...

Time May 30, 2023
arrow
News | Radiation Therapy

May 30, 2023 — The first treatment, for a patient with prostate cancer, was successfully carried out on April 28. Yonsei ...

Time May 30, 2023
arrow
News | Radiology Business

May 26, 2023 — Siemens Healthineers and CommonSpirit Health have agreed to acquire Block Imaging. This new acquisition ...

Time May 26, 2023
arrow
News | Computed Tomography (CT)

May 26, 2023 — GE HealthCare, a leading medical technology innovator, announced today its largest ever CT deal in the ...

Time May 26, 2023
arrow
News | Pediatric Imaging

May 24, 2023 — A new advanced form of computed tomography (CT) imaging called photon-counting computed tomography (PCCT) ...

Time May 24, 2023
arrow
News | Oncology Information Management Systems (OIMS)

May 24, 2023 — RaySearch Laboratories AB announced that the oncology information system RayCare* (* subject to ...

Time May 24, 2023
arrow
News | ASTRO

May 23, 2023 — More than 9 in 10 radiation oncologists report that their practices face clinical staff shortages ...

Time May 23, 2023
arrow
News | Radiation Oncology

May 23, 2023 — ZAP Surgical Systems, Inc., a leading innovator in the field of surgical robotics, today announced that ...

Time May 23, 2023
arrow
Subscribe Now