News | Artificial Intelligence | November 26, 2020

Study conducted by medical AI startup Lunit and Massachusetts General Hospital, published in JAMA Network Open - When used as a second reader, the AI algorithm may help detect lung cancer

Study conducted by medical AI startup Lunit and Massachusetts General Hospital, published in JAMA Network Open - When used as a second reader, the AI algorithm may help detect lung cancer

November 26, 2020 — A recent study published in JAMA Network Open has shown that an AI algorithm trained to detect pulmonary nodules can improve lung cancer detection on chest radiographs.

The study was conducted by MGH and Lunit, a South Korean medical artificial intelligence (AI) company. The joint research team analyzed 5,485 chest radiographs collected from participants in the National Lung Screening Trial (NLST) with Lunit INSIGHT CXR, an AI software for diagnosing chest x-rays.

According to this diagnostic study, the sensitivity and specificity of the AI algorithm for finding malignant pulmonary nodules were 94% and 83%, respectively. It even had a higher sensitivity compared to NLST radiologists, implementing its possibility to help detect lung cancer when used as a second reader.

“Low-dose CT is recommended for lung cancer screening because the detection of chest radiographs is challenging for radiologists due to its projectional nature of radiography,” explained Subba Digumarthy, the senior author of the study and an attending thoracic radiologist at MGH. “However, compared with chest radiography, CT is less accessible and more expensive, exposing patients to a higher dose of radiation. This study shows that AI can provide diagnostic value to more patients by supplementing the shortcomings and maintaining the advantages of x-ray diagnosis.”

“Through this first collaboration with the MGH research team, we are happy to validate the generalizability and accuracy of our AI approach based on NLST data,” said Brandon Suh, CEO of Lunit. “It is a meaningful study to show Lunit INSIGHT CXR can be utilized to diagnose cancer-related nodules and detect lung cancer in earlier stages.”

Lunit Insight CXR analyzes more than 3 million images in more than 80 countries, and has an accuracy of 97 to 99% in detecting 10 major chest diseases such as lung nodules and pneumothorax. It is CE marked and clinically available in Europe.

For more information: www.lunit.io

Related Content

News | Ultrasound Imaging

May 24, 2022 — Mindray, a global leader and developer of healthcare technologies and solutions for ultrasound, patient ...

Time May 24, 2022
arrow
News | Coronavirus (COVID-19)

May 24, 2022 — A special type of MRI found lung abnormalities in patients who had previously had COVID-19, even those ...

Time May 24, 2022
arrow
News | Radiology Business

May 23, 2022 — AHRA, The Association for Medical Imaging Management, the professional organization representing all ...

Time May 23, 2022
arrow
News | Coronavirus (COVID-19)

May 23, 2022 — The clinical and imaging characteristics of COVID-19 breakthrough infections in fully vaccinated patients ...

Time May 23, 2022
arrow
News | Lung Imaging

May 23, 2022 — Xoran Technologies announced they have completed Phase 1 for their NHLBI grant for mobile lung CT. Just ...

Time May 23, 2022
arrow
News | Contrast Media

May 19 2022 — Recent disruptions in a pharmaceutical supply chain have impacted the global availability of GE Healthcare ...

Time May 19, 2022
arrow
News | Breast Imaging

May 18, 2022 — Therapixel, a company leading the use of AI-based software for women’s health, announces it has released ...

Time May 18, 2022
arrow
Feature | Radiology Business | By Merilee Kern, MBA

Numerous indicators make clear that the next five years will usher in extreme transformation for a multitude of ...

Time May 18, 2022
arrow
Feature | Coronavirus (COVID-19)

Clinical scientists used machine learning (ML) models to explore de-identified electronic health record (EHR) data in ...

Time May 18, 2022
arrow
News | Digital Pathology

May 17, 2022 — Proscia, a leader in digital and computational pathology solutions, has introduced an automated quality ...

Time May 17, 2022
arrow
Subscribe Now