News | Artificial Intelligence | April 18, 2019

Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer

FocalNet artificial neural network achieves 80.5 percent accuracy in reading MRI scans for prostate cancer, compared to 83.9 percent for experienced radiologists

Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer

April 18, 2019 — University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to help radiologists improve their ability to diagnose prostate cancer. The system, called FocalNet, helps identify and predict the aggressiveness of the disease by evaluating magnetic resonance imaging (MRI) scans, and it does so with nearly the same level of accuracy as experienced radiologists. In tests, FocalNet was 80.5 percent accurate in reading MRIs, while radiologists with at least 10 years of experience were 83.9 percent accurate.

Radiologists use MRI to detect and assess the aggressiveness of malignant prostate tumors. However, it typically takes practicing on thousands of scans to learn how to accurately determine whether a tumor is cancerous or benign, and to accurately estimate the grade of the cancer. In addition, many hospitals do not have the resources to implement the highly specialized training required for detecting cancer from MRIs.

FocalNet is an artificial neural network that uses an algorithm that comprises more than a million trainable variables; it was developed by the UCLA researchers. The team trained the system by having it analyze MRI scans of 417 men with prostate cancer; scans were fed into the system so that it could learn to assess and classify tumors in a consistent way and have it compare the results to the actual pathology specimen. Researchers compared the artificial intelligence system’s results with readings by UCLA radiologists who had more than 10 years of experience.

The research suggests that an artificial intelligence system could save time and potentially provide diagnostic guidance to less-experienced radiologists.

The study’s senior authors are Kyung Sung, assistant professor of radiology at the David Geffen School of Medicine at UCLA; Steven Raman, M.D., a UCLA clinical professor of radiology and a member of the UCLA Jonsson Comprehensive Cancer Center; and Dieter Enzmann, M.D., chair of radiology at UCLA. The lead author is Ruiming Cao, a UCLA graduate student. Other authors are Amirhossein Bajgiran, Sohrab Mirak, Sepideh Shakeri and Xinran Zhong, all from UCLA.

The research is published in IEEE Transactions on Medical Imaging,1 and was presented at the IEEE International Symposium on Biomedical Imaging (ISBI), April 8-11 in Venice, Italy, where it was selected as the runner up-for best paper.

For more information: www.ieeexplore.ieee.org

 

Reference

1. Cao R., Bajgiran A.M., Mirak S.A., et al. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE Transactions on Medical Imaging, published online Feb. 27, 2019. DOI: 10.1109/TMI.2019.2901928

Related Content

The impact of deploying artificial intelligence (AI) for radiation cancer therapy in a real-world clinical setting has been tested by Princess Margaret researchers in a unique study involving physicians and their patients.

Getty Images

News | Artificial Intelligence | June 15, 2021
June 15, 2021 — The impact of deploying ...
A cardiac MRI of athletes who had COVID-19 is seven times more effective in detecting inflammation of the heart than symptom-based testing, according to a study led by researchers at The Ohio State University Wexner Medical Center and College of Medicine with 12 other Big Ten programs.

Cardiac Magnetic Resonance Imaging in Athletes With Clinical and Subclinical Myocarditis A-D, Athlete A with subclinical possible myocarditis was asymptomatic with normal electrocardiogram (ECG), echocardiogram, and high-sensitivity troponin findings. A, T2 mapping showing elevated T2 in basal-mid inferolateral wall in short axis view. B, late gadolinium enhancement (LGE) in the basal inferolateral wall in short axis view. C, Postcontrast steady state-free precession (SSFP) images showing contrast uptake in the basal-mid inferolateral wall in short axis view. D, LGE in the inferolateral wall in 3-chamber view. E-H, Athlete B with subclinical probable myocarditis was asymptomatic with normal ECG, normal echocardiogram, and elevated high-sensitivity troponin findings. E, T2 mapping showing elevated T2 in the anteroseptal wall in short axis view. F, LGE in the anteroseptal wall in 3-chamber view. G, T2 mapping showing elevated T2 in the anteroseptal wall in 3-chamber view. F, Postcontrast SSFP image showing pericardial effusion in short axis view. I-K, Athlete C with clinical myocarditis and chest pain, dyspnea, abnormal ECG, normal echocardiogram, and normal troponin findings. I, T2 mapping showing elevated T2 in the lateral wall short axis view. J, Postcontrast SSFP images showing contrast uptake in midlateral wall in short axis view. K, LGE in the epicardial midlateral wall in short axis view. L-N, Athlete D with clinical myocarditis, chest pain, abnormal ECG, echocardiogram, and troponin findings. L, T1 mapping showing elevated native T1 in midlateral wall in short axis view. M, T2 mapping showing elevated T2 in the midlateral wall in short axis view. N, LGE in the epicardial midlateral wall in short axis view. IR indicates inferior right view; IRP, inferior, right, posterior view; PLI, posterior, left, inferior view; SL, superior left view; SLA, superior, left, anterior view. Image courtesy of JAMA Cardiol. Published online May 27, 2021. doi:10.1001/jamacardio.2021.2065

News | Cardiac Imaging | June 15, 2021
June 15, 2021 — A...
Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

Prediction performance of DL compared to quantitative measures and Kaplan-Meier curves for quartiles of DL. Image created by Singh et al., Cedars-Sinai Medical Center, Los Angeles, CA.

News | SPECT Imaging | June 14, 2021
June 14, 2021 — An advanced artificial i...
Richard Ernst was considered the father of nuclear magnetic resonance imaging (MRI)
News | Magnetic Resonance Imaging (MRI) | June 10, 2021
June 10, 2021 — The Washington Post has reported that Richard R.
According to a pilot study published in ARRS’ American Journal of Roentgenology (AJR), the flexed elbow valgus external rotation (FEVER) view can improve magnetic resonance imaging (MRI) evaluation of the ulnar collateral ligament (UCL) in Major League Baseball (#MLB) pitchers.

(A) Side view of volunteer demonstrating proper positioning for FEVER view; note elevated flexed elbow and sandbags to induce valgus stress. Elbow coil is not included in image.

(B) Coronal fat-saturated proton-density weighted MR image in FEVER view in 20-year-old male pitcher shows normal anterior bundle of UCL (blue arrow) and 2.9 mm UT articular width.

News | Magnetic Resonance Imaging (MRI) | June 04, 2021
Cina Chest is part of Avicenna’s CINA family of AI tools that support the treatment of emergencies, including CINA HEAD, its FDA-cleared and CE-Marked solution that supports the detection and triage of stroke and neurovascular emergencies.
News | Artificial Intelligence | June 03, 2021
June 3, 2021 — Medical imaging AI specialist Avicenna.AI announced
Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

Chest X-rays used in the COVID-Net study show differing infection extent and opacity in the lungs of COVID-19 patients. Image courtesy of University of Waterloo

News | Coronavirus (COVID-19) | June 03, 2021
June 3, 2021 — Artificial intelligence
A) Ultrasound in 28-year-old woman (B) MRI in 34-year-old woman with suspected PAS disorder. Focal area of placental tissues bulge toward imaginary lines of normal uterine contour (dash lines). Length (L) and depth (D) measurements of placental bulge also demonstrated. p = placenta; b = bladder. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

A) Ultrasound in 28-year-old woman (B) MRI in 34-year-old woman with suspected PAS disorder. Focal area of placental tissues bulge toward imaginary lines of normal uterine contour (dash lines). Length (L) and depth (D) measurements of placental bulge also demonstrated. p = placenta; b = bladder. Image courtesy of American Roentgen Ray Society (ARRS), American Journal of Roentgenology (AJR)

News | Ultrasound Imaging | June 01, 2021
June 1, 2021 — According to an open-access Editor's Choice article in ARRS' ...