News | Artificial Intelligence | April 18, 2019

Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer

FocalNet artificial neural network achieves 80.5 percent accuracy in reading MRI scans for prostate cancer, compared to 83.9 percent for experienced radiologists

Artificial Intelligence Performs As Well As Experienced Radiologists in Detecting Prostate Cancer

April 18, 2019 — University of California Los Angeles (UCLA) researchers have developed a new artificial intelligence (AI) system to help radiologists improve their ability to diagnose prostate cancer. The system, called FocalNet, helps identify and predict the aggressiveness of the disease by evaluating magnetic resonance imaging (MRI) scans, and it does so with nearly the same level of accuracy as experienced radiologists. In tests, FocalNet was 80.5 percent accurate in reading MRIs, while radiologists with at least 10 years of experience were 83.9 percent accurate.

Radiologists use MRI to detect and assess the aggressiveness of malignant prostate tumors. However, it typically takes practicing on thousands of scans to learn how to accurately determine whether a tumor is cancerous or benign, and to accurately estimate the grade of the cancer. In addition, many hospitals do not have the resources to implement the highly specialized training required for detecting cancer from MRIs.

FocalNet is an artificial neural network that uses an algorithm that comprises more than a million trainable variables; it was developed by the UCLA researchers. The team trained the system by having it analyze MRI scans of 417 men with prostate cancer; scans were fed into the system so that it could learn to assess and classify tumors in a consistent way and have it compare the results to the actual pathology specimen. Researchers compared the artificial intelligence system’s results with readings by UCLA radiologists who had more than 10 years of experience.

The research suggests that an artificial intelligence system could save time and potentially provide diagnostic guidance to less-experienced radiologists.

The study’s senior authors are Kyung Sung, assistant professor of radiology at the David Geffen School of Medicine at UCLA; Steven Raman, M.D., a UCLA clinical professor of radiology and a member of the UCLA Jonsson Comprehensive Cancer Center; and Dieter Enzmann, M.D., chair of radiology at UCLA. The lead author is Ruiming Cao, a UCLA graduate student. Other authors are Amirhossein Bajgiran, Sohrab Mirak, Sepideh Shakeri and Xinran Zhong, all from UCLA.

The research is published in IEEE Transactions on Medical Imaging,1 and was presented at the IEEE International Symposium on Biomedical Imaging (ISBI), April 8-11 in Venice, Italy, where it was selected as the runner up-for best paper.

For more information: www.ieeexplore.ieee.org

 

Reference

1. Cao R., Bajgiran A.M., Mirak S.A., et al. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE Transactions on Medical Imaging, published online Feb. 27, 2019. DOI: 10.1109/TMI.2019.2901928

Related Content

he U.S. Food and Drug Administration (FDA) has issued a final order to reclassify medical image analyzers applied to mammography breast cancer, ultrasound breast lesions, radiograph lung nodules and radiograph dental caries detection, postamendments class III devices (regulated under product code MYN), into class II (special controls), subject to premarket notification

Image courtesy of iCAD

News | Computer-Aided Detection Software | January 22, 2020
January 22, 2020 — The U.S.
Medical imaging technology company Oxipit announced partnership with Swiss medical distribution company Healthcare Konnect to bring ChestEye AI imaging suite to healthcare institutions in Nigeria
News | Artificial Intelligence | January 22, 2020
January 22, 2020 — Medical imaging technology company Oxipit ann
Hitachi Healthcare Americas announced that it will create a new dedicated research and development facility within its North American headquarters facility in Twinsburg, Ohio
News | Radiology Business | January 21, 2020
January 21, 2020 — Hitachi Healthcare Americas announced that it will create a new dedicated research and development
This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.   #RSNA #

This is a lung X-ray reviewed automatically by artificial intelligence (AI) to identify a collapsed lung (pneumothorax) in the color coded area. This AI app from Lunit is awaiting final FDA review and in planned to be integrated into several vendors' mobile digital radiography (DR) systems. Fujifilm showed this software integrated as a work-in-progress into its mobile X-ray system at RSNA 2019. GE Healthcare has its own version of this software for its mobile r=ray systems that gained FDA in 2019.

Feature | RSNA | January 20, 2020 | Dave Fornell, Editor
Here are images of some of the newest new medical imaging technologies displayed on the expo floor at the ...
Researchers at Karolinska Institutet in Sweden and Tampere University in Finland have developed a method based on artificial intelligence (AI) for histopathological diagnosis and grading of prostate cancer

From left: Peter Ström, Martin Eklund, Kimmo Kartasalo, Henrik Olsson och Lars Egevad, researchers at Karolinska Institutet in Sweden. Photo courtesy of Stefan Zimmerman

News | Prostate Cancer | January 20, 2020
January 20, 2020 — Researchers at Karolinska Institutet in Sweden and...
Gadolinium based contrast dye in brain MRI

Gadolinium contrast agents (GBCAs) are partly retained in the brain, raising safety concerns, as seen in this MRI.

News | Contrast Media | January 17, 2020
January 17, 2020 — Bracco Diagnostics Inc., the U.
Videos | RSNA | January 13, 2020
ITN Editor Dave Fornell takes a tour of some of the most innovative new medical imaging technologies displayed on the
Trends in Overall Cancer Mortality Rates by Sex, United States, 1930 to 2017. Rates are age adjusted to the 2000 US standard population

Trends in Overall Cancer Mortality Rates by Sex, United States, 1930 to 2017. Rates are age adjusted to the 2000 US standard population. Chart courtesy of the American Cancer Society

News | Radiation Oncology | January 13, 2020
January 13, 2020 — The cancer death rate declined