News | Contrast Media | November 27, 2018

Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Study results demonstrate potential for creating equivalent of full-dose, contrast-enhanced MR images without any contrast agent use

Artificial Intelligence May Help Reduce Gadolinium Dose in MRI

Example of full-dose, 10 percent low-dose and algorithm-enhanced low-dose. Image courtesy of Enhao Gong, Ph.D.

November 27, 2018 — Researchers are using artificial intelligence (AI) to reduce the dose of a contrast agent that may be left behind in the body after magnetic resonance imaging (MRI) exams, according to a new study. The study was presented at the 2018 annual meeting of the Radiological Society of North America (RSNA), Nov. 25-30 in Chicago.

Gadolinium is a heavy metal used in contrast material that enhances images on MRI. Recent studies have found that trace amounts of the metal remain in the bodies of people who have undergone exams with certain types of gadolinium. The effects of this deposition are not known, but radiologists are working proactively to optimize patient safety while preserving the important information that gadolinium-enhanced MRI scans provide.

“There is concrete evidence that gadolinium deposits in the brain and body,” said study lead author Enhao Gong, Ph.D., researcher at Stanford University in Stanford, Calif. “While the implications of this are unclear, mitigating potential patient risks while maximizing the clinical value of the MRI exams is imperative.”

Gong and colleagues at Stanford have been studying deep learning as a way to achieve this goal. Deep learning is a sophisticated artificial intelligence technique that teaches computers by examples. Through use of models called convolutional neural networks, the computer can not only recognize images but also find subtle distinctions among the imaging data that a human observer might not be capable of discerning.

To train the deep learning algorithm, the researchers used MR images from 200 patients who had received contrast-enhanced MRI exams for a variety of indications. They collected three sets of images for each patient:

  • Pre-contrast scans, done prior to contrast administration and referred to as the zero-dose scans;
  • Low-dose scans, acquired after 10 percent of the standard gadolinium dose administration; and
  • Full-dose scans, acquired after 100 percent dose administration.

The algorithm learned to approximate the full-dose scans from the zero-dose and low-dose images. Neuroradiologists then evaluated the images for contrast enhancement and overall quality.

Results showed that the image quality was not significantly different between the low-dose, algorithm-enhanced MR images and the full-dose, contrast-enhanced MR images. The initial results also demonstrated the potential for creating the equivalent of full-dose, contrast-enhanced MR images without any contrast agent use.

These findings suggest the method’s potential for dramatically reducing gadolinium dose without sacrificing diagnostic quality, according to Gong.

“Low-dose gadolinium images yield significant untapped clinically useful information that is accessible now by using deep learning and AI,” he said.

Now that the researchers have shown that the method is technically possible, they want to study it further in the clinical setting, where Gong believes it will ultimately find a home.

Future research will include evaluation of the algorithm across a broader range of MRI scanners and with different types of contrast agents.

“We’re not trying to replace existing imaging technology,” Gong said. “We’re trying to improve it and generate more value from the existing information while looking out for the safety of our patients.”

Gong received an RSNA “Trainee Research Prize – Resident” award for his research.

For more information: www.rsna.org

Related Gadolinium Content

The Debate Over Gadolinium MRI Contrast Toxicity

VIDEO: How Serious is MRI Gadolinium Retention in the Brain and Body?

VIDEO: Big Concerns Remain for MRI Gadolinium Contrast Safety at RSNA 2017

Radiology Has Failed to Properly Assess or Track MRI Gadolinium Contrast Safety

FDA Committee Votes to Expand Warning Labels on Gadolinium-Based Contrast Agents

Related Content

Anatomage Releases Anatomage Cloud Platform
News | Remote Viewing Systems | July 16, 2019
Anatomage Inc. released an update to the Anatomage Cloud platform that allows medical and dental professionals to...
AAPM 2019 Features More Than 40 Presentations on ViewRay's MRIdian MRI-guided Radiotherapy
News | Image Guided Radiation Therapy (IGRT) | July 16, 2019
ViewRay Inc. announced that the company's MRIdian System is the focus of more than 40 abstracts selected by the...
FDA Approves Bayer's Gadavist Contrast for Cardiac MRI in Adult Coronary Artery Disease Patients
Technology | Contrast Media | July 15, 2019
The U.S. Food and Drug Administration (FDA) has approved Gadavist injection for use in cardiac magnetic resonance...
Graphic courtesy Pixabay

Graphic courtesy Pixabay

Feature | Artificial Intelligence | July 15, 2019 | By Greg Freiherr
Siemens has long focused on automation as a way to make diagnostic equipment faster and more efficient.
Videos | Artificial Intelligence | July 12, 2019
Khan Siddiqui, M.D., founder and CEO of HOPPR, discusses the economic advantages and costs presented by...
Videos | Digital Pathology | July 11, 2019
Toby Cornish, M.D., Ph.D., associate professor and medical director of informatics at the University of Colorado Scho
Fluke Biomedical Introduces RaySafe 452 Survey Meter
Technology | Radiation Dose Management | July 11, 2019
Radiation measurement often requires different devices for varying applications, adding to the cost and complexity of...
FDA Clears Koios DS Breast 2.0 AI-based Software
News | Ultrasound Women's Health | July 11, 2019
Koios Medical announced its second 510(k) clearance from the U.S. Food and Drug Administration (FDA).