News | CT Angiography (CTA) | August 06, 2019

Artificial Intelligence Improves Heart Attack Risk Assessment

Machine learning model trained on coronary CT angiography images predicts risk of cardiovascular event better than CAD-RADS alone

Artificial Intelligence Improves Heart Attack Risk Assessment

August 6, 2019 — When used with a common heart scan, machine learning, a type of artificial intelligence (AI), does better than conventional risk models at predicting heart attacks and other cardiac events, according to a study published in the journal Radiology.

Heart disease is the leading cause of death for both men and women in the United States. Accurate risk assessment is crucial for early interventions including diet, exercise and drugs like cholesterol-lowering statins. However, risk determination is an imperfect science, and popular existing models like the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries.

Coronary computed tomography arteriography (CCTA), a kind of CT that gives highly detailed images of the heart vessels, is a promising tool for refining risk assessment — so promising that a multidisciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the Coronary Artery Disease Reporting and Data System (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. While CAD-RADS is an important and useful development in the management of cardiac patients, its focus on stenoses may leave out important information about the arteries, according to study lead author Kevin M. Johnson, M.D., associate professor of radiology and biomedical imaging at the Yale School of Medicine in New Haven, Conn.

Read the article "Multi-Society Group Releases CAD-RADS for Standardized Coronary CT Angiography Reporting"

Noting that CCTA shows more than just stenoses, Johnson recently investigated a machine learning (ML) system capable of mining the myriad details in these images for a more comprehensive prognostic picture.

“Starting from the ground up, I took imaging features from the coronary CT,” he said. “Each patient had 64 of these features and I fed them into a machine learning algorithm. The algorithm is able to pull out the patterns in the data and predict that patients with certain patterns are more likely to have an adverse event like a heart attack than patients with other patterns.”

For the study, Johnson and colleagues compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. They followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.

Compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93 percent of patients with events would receive the drug, compared with only 69 percent if CAD-RADS were relied on.

“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS,” Johnson said. “Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk.”

If machine learning can improve vessel scoring, it would enhance the contribution of noninvasive imaging to cardiovascular risk assessment. Additionally, the ML-derived vessel scores could be combined with non-imaging risk factors such as age, gender, hypertension and smoking to develop more comprehensive risk models. This would benefit both physicians and patients.

“Once you use a tool like this to help see that someone’s at risk, then you can get the person on statins or get their glucose under control, get them off smoking, get their hypertension controlled, because those are the big, modifiable risk factors,” he said.

Johnson is currently working on a paper that takes results from this study and folds them into the bigger picture with non-imaging risk factors.

“If you add people’s ages and particulars like smoking, diabetes and hypertension, that should increase the overall power of the method and improve the overall results,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

VIDEO: The Introduction of CAD-RADS

Reference

Johnson K.M., Johnson H.E., Zhao Y., et al. Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning. Radiology, June 25, 2019. https://doi.org/10.1148/radiol.2019182061

Related Content

Chief among the myriad practical updates to minimize risks for patients and imaging personnel alike is a tiered approach for delaying both outpatient and inpatient cross-sectional interventional procedures

For procedural delays that will not adversely affect patient outcome, Fananapazir and colleagues proposed the following tiered approach for both outpatient and inpatient scenarios: urgent procedures, procedures that should be performed within 2 weeks, procedures that should be performed within 2 months, and procedures that can safely be delayed 2 or 6 months. Courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | June 05, 2020
June 5, 2020 — An...
Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it is critical for overall treatment success and saving patients' lives. Diffusion-weighted magnetic resonance imaging (DWI) may be used to detect a malignancy in various tissues and organs. It has the advantage of providing insight into the diffusion of water molecules in body tissues without exposing patients to radiation.

DWI of the phantom with polyvinylpyrrolidone (PVP) solutions (b value 500 s/mm2). Image courtesy of Kristina Sergunova et al.

News | Magnetic Resonance Imaging (MRI) | June 02, 2020
June 2, 2020 — Early diagnosis of cancer is one of the highest-priority problem for the healthcare system, because it
Developed by medical AI company Lunit, Software detects breast cancer with 97% accuracy; Study in Lancet Digital Health shows that Lunit INSIGHT MMG-aided radiologists showed an increase in sensitivity

Lunit INSIGHT MMG

News | Artificial Intelligence | June 02, 2020
June 2, 2020 — Lunit announced that its artificia...
Nuclear Cardiology Optimistic About Return to Pre-COVID-19 Exam Levels. An American Society of Nuclear Cardiology (ASNC) member survey are confident nuclear cardiology volumes will return to pre-pandemic levels. #COVID19 #SARScov2
News | Nuclear Imaging | June 01, 2020
June 1, 2020 — While acknowledging the challenges their specialty is facing, more than two-thirds of respondents to a
AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
Largest case series (n=30) to date yields high frequency (77%) of negative chest CT findings among pediatric patients (10 months-18 years) with COVID-19, while also suggesting common findings in subset of children with positive CT findings

A and B, Unenhanced chest CT scans show minimal GGOs (right lower and left upper lobes) (arrows) and no consolidation. Only two lobes were affected, and CT findings were assigned CT severity score of 2. Image courtesy of American Journal of Roentgenology (AJR)

News | Coronavirus (COVID-19) | May 29, 2020
May 29, 2020 — An investigation published open-access in the ...
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

The Philips Lumify point-of-care ultrasound (POCUS) system assessing a patient in the emergency room combined with telehealth to enable real-time collaboration with other physicians.

News | Coronavirus (COVID-19) | May 26, 2020
May 26, 2020  — Philips Healthcare recently received 510(k) clearance from the U.S.
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm