News | CT Angiography (CTA) | August 06, 2019

Artificial Intelligence Improves Heart Attack Risk Assessment

Machine learning model trained on coronary CT angiography images predicts risk of cardiovascular event better than CAD-RADS alone

Artificial Intelligence Improves Heart Attack Risk Assessment

August 6, 2019 — When used with a common heart scan, machine learning, a type of artificial intelligence (AI), does better than conventional risk models at predicting heart attacks and other cardiac events, according to a study published in the journal Radiology.

Heart disease is the leading cause of death for both men and women in the United States. Accurate risk assessment is crucial for early interventions including diet, exercise and drugs like cholesterol-lowering statins. However, risk determination is an imperfect science, and popular existing models like the Framingham Risk Score have limitations, as they do not directly consider the condition of the coronary arteries.

Coronary computed tomography arteriography (CCTA), a kind of CT that gives highly detailed images of the heart vessels, is a promising tool for refining risk assessment — so promising that a multidisciplinary working group recently introduced a scoring system for summarizing CCTA results. The decision-making tool, known as the Coronary Artery Disease Reporting and Data System (CAD-RADS), emphasizes stenoses, or blockages and narrowing in the coronary arteries. While CAD-RADS is an important and useful development in the management of cardiac patients, its focus on stenoses may leave out important information about the arteries, according to study lead author Kevin M. Johnson, M.D., associate professor of radiology and biomedical imaging at the Yale School of Medicine in New Haven, Conn.

Read the article "Multi-Society Group Releases CAD-RADS for Standardized Coronary CT Angiography Reporting"

Noting that CCTA shows more than just stenoses, Johnson recently investigated a machine learning (ML) system capable of mining the myriad details in these images for a more comprehensive prognostic picture.

“Starting from the ground up, I took imaging features from the coronary CT,” he said. “Each patient had 64 of these features and I fed them into a machine learning algorithm. The algorithm is able to pull out the patterns in the data and predict that patients with certain patterns are more likely to have an adverse event like a heart attack than patients with other patterns.”

For the study, Johnson and colleagues compared the ML approach with CAD-RADS and other vessel scoring systems in 6,892 patients. They followed the patients for an average of nine years after CCTA. There were 380 deaths from all causes, including 70 from coronary artery disease. In addition, 43 patients reported heart attacks.

Compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not. When deciding whether to start statins, the ML score ensured that 93 percent of patients with events would receive the drug, compared with only 69 percent if CAD-RADS were relied on.

“The risk estimate that you get from doing the machine learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS,” Johnson said. “Both methods perform better than just using the Framingham risk estimate. This shows the value of looking at the coronary arteries to better estimate people’s risk.”

If machine learning can improve vessel scoring, it would enhance the contribution of noninvasive imaging to cardiovascular risk assessment. Additionally, the ML-derived vessel scores could be combined with non-imaging risk factors such as age, gender, hypertension and smoking to develop more comprehensive risk models. This would benefit both physicians and patients.

“Once you use a tool like this to help see that someone’s at risk, then you can get the person on statins or get their glucose under control, get them off smoking, get their hypertension controlled, because those are the big, modifiable risk factors,” he said.

Johnson is currently working on a paper that takes results from this study and folds them into the bigger picture with non-imaging risk factors.

“If you add people’s ages and particulars like smoking, diabetes and hypertension, that should increase the overall power of the method and improve the overall results,” he said.

For more information: www.pubs.rsna.org/journal/radiology

Related Content

VIDEO: The Introduction of CAD-RADS

Reference

Johnson K.M., Johnson H.E., Zhao Y., et al. Scoring of Coronary Artery Disease Characteristics on Coronary CT Angiograms by Using Machine Learning. Radiology, June 25, 2019. https://doi.org/10.1148/radiol.2019182061

Related Content

Guerbet Signs Agreement With Icometrix for Exclusive Distribution of Icobrain
News | Neuro Imaging | October 16, 2019
Guerbet announced it has signed an exclusive agreement with Icometrix for the distribution in France, Italy and Brazil...
Subtle Medical Receives FDA 510(k) Clearance for AI-powered SubtleMR
Technology | Artificial Intelligence | October 16, 2019
Subtle Medical announced 510(k) clearance from the U.S. Food and Drug Administration (FDA) to market SubtleMR. SubtleMR...
Feature | Artificial Intelligence | October 16, 2019 | By Siddharth (Sid) Shah
The period between November through February is pretty interesting for the field of medical imaging — two major confe
As the role of artificial intelligence continues to expand, many companies are making significant investments in this technology to offer solutions
Feature | Artificial Intelligence | October 09, 2019 | By Sharmistha Sarkar
Artificial intelligence (AI) is a technology
Sponsored Content | Whitepapers | Clinical Trials | October 09, 2019
A 2019 N G PX REPORT
RSNA Announces Intracranial Hemorrhage AI Challenge
News | Artificial Intelligence | October 08, 2019
The Radiological Society of North America (RSNA) recently launched its third annual artificial intelligence (AI)...
An illustration of radiology department analytics data showing GE Healthcare's business analytics software.
Feature | Radiology Business | October 08, 2019 | April Wilson
According to IBM, the world creates 2.5 quintillion bytes of data daily.
Attendees of ASTRO 2019 walked the halls of McCormick Place in Chicago, Ill.

Attendees of ASTRO 2019 walked the halls of McCormick Place in Chicago, Ill.

Feature | ASTRO | October 03, 2019 | By Greg Freiherr
At the American Society for Radiation Oncology’s (ASTRO) 2019 a