News | Coronavirus (COVID-19) | June 04, 2020

AI Can Improve How Chest Images Are Used in Care of COVID-19 Patients

According to a recent report by Johns Hopkins Medicine researchers, artificial intelligence (AI) should be used to expand the role of chest X-ray imaging — using computed tomography, or CT —  in diagnosing and assessing coronavirus infection so that it can be more than just a means of screening for signs of COVID-19 in a patient's lungs.

Getty images

June 4, 2020 — According to a recent report by Johns Hopkins Medicine researchers, artificial intelligence (AI) should be used to expand the role of chest X-ray imaging — using computed tomography, or CT —  in diagnosing and assessing coronavirus infection so that it can be more than just a means of screening for signs of COVID-19 in a patient's lungs.

Within the study, published in the May 6 issue of Radiology: Artificial Intelligence, the researchers say that "AI's power to generate models from large volumes of information — fusing molecular, clinical, epidemiological and imaging data — may accelerate solutions to detect, contain and treat COVID-19."

Although CT chest imaging is not currently a routine method for diagnosing COVID-19 in patients, it has been helpful in excluding other possible causes for COVID-like symptoms, confirming a diagnosis made by another means or providing critical data for monitoring a patient's progress in severe cases of the disease. The Johns Hopkins Medicine researchers believe this isn't enough, making the case that there is "an untapped potential" for AI-enhanced imaging to improve. They suggest the technology can be used for:

  • Risk stratification, the process of categorizing patients for the type of care they receive based on the predicted course of their COVID-19 infection.
  • Treatment monitoring to define the effectiveness of agents used to combat the disease.
  • Modeling how COVID-19 behaves, so that novel, customized therapies can be developed, tested and deployed.

For example, the researchers propose that "AI may help identify the immunological markers most associated with poor clinical course, which may yield new targets" for drugs that will direct the immune system against the SARS-CoV-2 virus that causes COVID-19.

For more information: www.hopkinsmedicine.org

Related Coronavirus Content:

VIDEO: Imaging COVID-19 With Point-of-Care Ultrasound (POCUS)

The Cardiac Implications of Novel Coronavirus

CT Provides Best Diagnosis for Novel Coronavirus (COVID-19)

Radiology Lessons for Coronavirus From the SARS and MERS Epidemics

Deployment of Health IT in China’s Fight Against the COVID-19 Epidemic

Emerging Technologies Proving Value in Chinese Coronavirus Fight

Radiologists Describe Coronavirus CT Imaging Features

Coronavirus Update from the FDA

CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia

CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV)

Chest CT Findings of Patients Infected With Novel Coronavirus 2019-nCoV Pneumonia 

Find more related clinical content Coronavirus (COVID-19)

ACC COVID-19 recommendations for the cardiovascular care team

VIDEO: What Cardiologists Need to Know about COVID-19 — Interview with Thomas Maddox, M.D.

The Cardiac Implications of Novel Coronavirus

ESC Council on Hypertension Says ACE-I and ARBs Do Not Increase COVID-19 Mortality

Related Content

New Module Creates a Warped MRI Scan that Matches Real-Time Ultrasound Results (Graphic: Business Wire)

New Module Creates a Warped MRI Scan that Matches Real-Time Ultrasound Results (Graphic: Business Wire)

News | Artificial Intelligence | May 07, 2021
News | Radiation Therapy | May 06, 2021
May 6, 2021 — Individuals living with severe...
3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

3D aMRI not only provides a stunning look inside the "beating brain", but it can also measure this physiological motion in all directions. Here, the amplitude of brain motion is overlayed for each brain slice and orientation in 3D. Image credit: 3D aMRI method outlined in Abderezaei et al. Brain Multiphysics (2021); Terem et al. Magnetic Resonance in Medicine (2021).

News | Magnetic Resonance Imaging (MRI) | May 06, 2021
May 6, 2021 — Magnetic Resonance Imaging
Research finds that a commonly used risk-prediction model for lung cancer does not accurately identify high-risk Black patients who could benefit from early screening

Getty Images

News | Lung Imaging | May 05, 2021
May 5, 2021 — Lung cancer is the third most common cance
After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by

After radiosurgery concurrent with nivolumab in 59-year-old patient with melanoma BM (patient 1; Supplemental Tables 3 and 5), F-18 FET PET at follow-up 12 weeks after treatment initiation (bottom row) shows significant decrease of metabolic activity (TBRmean, ?28%) compared with baseline (top row), although MRI changes were consistent with progression according to iRANO criteria. Reduction of metabolic activity was associated with stable clinical course over 10 mo. CE = contrast-enhanced. Image created by N. Galldiks et al., Research Center Juelich, Juelich, Germany.

News | PET Imaging | May 05, 2021
May 5, 2021 — For patients with brain metastases, amino acid ...