News | Neuro Imaging | August 30, 2016

3-D Imaging Reveals Unexpected Plaque Arrangements in Alzheimer's-afflicted Brains

iDISCO technique may lead to further categorization of Alzheimer’s disease, which could have major impact on treatment

iDISCO, Alzheimer’s, pathology imaging

Example of the iDISCO technique to image brain samples containing Alzheimer’s disease, which could have major impact on treatment. For more inages and videos view the article online at www.cell.com/cell-reports/fulltext/S2211-1247(16)30814-2

August 30, 2016 — Rockefeller University researchers have used a recently-developed imaging technique that makes tissue transparent to visualize brain tissue from deceased patients with Alzheimer's disease. The technique has exposed nonrandom, higher-order structures of beta amyloid plaques — sticky clumps of a toxic protein typically found in the brains of people with Alzheimer's. The findings were published online July 14 in Cell Reports.

"Until now, we've been studying the brain using 2-D slices; and I've always felt that was inadequate, because it's a complex, 3-D structure with many interlocking components," said senior author Marc Flajolet, an assistant professor in the Laboratory of Molecular and Cellular Neuroscience at The Rockefeller University. "Not only was slicing time-consuming and 3-D reconstruction laborious when not erroneous, it gave us a limited view. We needed some way to look at this 3-D structure in all of its dimensions without preliminary slicing of the brain."

The researchers wanted to go beyond the traditional 3-D brain imaging (e.g., positron emission tomography [PET] or functional magnetic resonance imaging [fMRI] scans), which show brain activity in a broad way but have a low resolution overall. To circumvent this, the research team turned to a recently developed method, called "iDISCO." Here, brains are soaked in a solution that imbues the fats within it with a charge, before being exposed to an electrical field with an opposite charge, which behaves like a magnet, forcing all of the fat out of the brain tissue.

The result, said Flajolet, is a brain that is hard and transparent, almost "like glass," which allowed the researchers to see the amyloid plaques in full detail and in 3-D, in a full mouse brain hemisphere, as well as in small blocks of human brain tissue.

"In mouse models, plaques are rather small, homogenous in size and shape, and not grouped in any specific way," said Flajolet. "But in the human brain, we were seeing more heterogeneity, larger plaques and these new, complex patterns." These structures, called three-dimensional amyloid patterns (TAPs) may have implications for the future of Alzheimer's disease treatment, he said. By comparing doctor's reports of a patient's symptoms with images of the patient's brain post-mortem, they may be able to classify different categories of Alzheimer's disease.

"There are people with brains full of plaques and no dementia at all," he said, "and there are those with brains free of plaques with many of the symptoms." In light of that, the way that current clinical trials view the disease — namely, that there is one category —might be incorrect, he said. It is possible that current drugs may be beneficial only for a subset of Alzheimer patients, but we have no way to distinguish them at this day.

Flajolet stressed that, moving forward, we need a better understanding of these plaques, and Alzheimer's hallmarks in general, as the relationship between their presence and the severity of the disease is not clear-cut. "Perhaps this will lead to the development of new and better targeted drugs, or allow us to rethink the drugs we have now — that's what we hope for,” he said.

This work was supported, in part, by grants from the U.S. National Institutes of Health, the Fisher Center for Alzheimer's Research Foundation, and the Cure Alzheimer's Fund. Additional support was received from the Empire State Stem Cell Fund through the New York State Department of Health.

For more information: www.cell.com/cell-reports

Related Content

A University of Colorado Cancer Center study published in the Journal of the National Cancer Institute shows an important predictor of PET-CT use

Rustain Morgan, M.D., and colleagues show racial/ethnic disparities in use of important imaging during lung cancer diagnosis. Photo courtesy of University of Colorado Cancer Center

News | PET-CT | March 12, 2020
March 12, 2020 — The use of PET-CT
 “Cyclotrons used in Nuclear Medicine Report & Directory, Edition 2020” that describes close to 1,500 medical cyclotrons worldwide
News | Nuclear Imaging | March 10, 2020
March 10, 2020 — MEDraysintell released its new and unique report “...
SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories

Example: SoftVue image stacks of sound speed, as shown for cases ranging across the four Breast Imaging Reporting and Data System (BI-RADS) breast density categories ((a), fatty; (b), scattered; (c), heterogeneously dense; (d), extremely dense). Note the quantitative scale indicating that absolute measurements are obtained. Image courtesy of MDPI

News | Breast Imaging | March 10, 2020
March 10, 2020 — ...
Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data

Figure 1: Depiction of the fully automated CT biomarkers tools used in this study. (A) Schematic depiction of the automated process for assessing fat, muscle, liver, aortic calcification, and bone from original abdominal CT scan data. (B) Case example in an asymptomatic 52-year-old man undergoing CT for colorectal cancer screening. At the time of CT screening, he had a body-mass index of 27·3 and Framingham risk score of 5% (low risk). However, several CT-based metabolic markers were indicative of underlying disease. Multivariate Cox model prediction based on these three CT-based results put the risk of cardiovascular event at 19% within 2 years, at 40% within 5 years, and at 67% within 10 years, and the risk of death at 4% within 2 years, 11% within 5 years, and 27% within 10 years. At longitudinal clinical follow-up, the patient suffered an acute myocardial infarction 3 years after this initial CT and died 12 years after CT at the age of 64 years. (C) Contrast-enhanced CT performed 7 months before death for minor trauma was interpreted as negative but does show significant progression of vascular calcification, visceral fat, and hepatic steatosis. HU=Hounsfield units.

News | Computed Tomography (CT) | March 06, 2020
March 6, 2020 — Researchers at the National Institutes of Health a
M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers

M. Minhaj Siddiqui, M.D., associate professor of surgery at the University of Maryland School of Medicine, discusses benefits of MRI-targeted biopsy to more precisely diagnose aggressive prostate cancers. (c) University of Maryland Greenebaum Comprehensive Cancer Center

News | Prostate Cancer | March 05, 2020
March 5, 2020 — Using a combination of...
MR Solutions’ dry magnet MRI system for molecular imaging on display at EMIM 2020
News | Magnetic Resonance Imaging (MRI) | February 28, 2020
February 28, 2020 — MR Solutions will be displaying its la
Christopher Comstock, M.D., ECOG-ACRIN Cancer Research Group study published in JAMA builds evidence for use of abbreviated MRI in women with dense breasts

Christopher Comstock, M.D., (Memorial Sloan Kettering Cancer Center) is the lead author of a paper in JAMA that reports that abbreviated breast MRI detected significantly more (almost 2 and a half times as many) breast cancers than digital breast tomosynthesis (3-D mammography) in average-risk women with dense breasts. Photo courtesy of Memorial Sloan Kettering Cancer Center

News | Breast Imaging | February 26, 2020
February 26, 2020 — According to a study