Feature | April 08, 2008 | Cristen C. Bolan

WEB EXCLUSIVE: FDG-PET Injector Thrusts New Life into Molecular Imaging

Medrad Awaits 510(k) to Launch New FDG-PET Power Injector System

Intego enables more accurate dose injection and reduces dose exposure by 40 percent.

Medrad hopes to thrust new life into molecular imaging with its 510(k) pending FDG-PET power injector system called Intego, designed to promote greater accuracy in dose injection and which reportedly reduces radiation exposure related to FDG-handling by 40 percent.

As part of the company’s first step in a long-term strategy to address a growing clinical need for fluid control in molecular imaging, it will introduce a new controlled injection system for PET that replaces syringe-based unit doses with tungsten-shielded dose vials.

If Medrad receives 510(k) clearance by May, the company plans to launch Intego at the Society of Nuclear Medicine, held in June 14-18, in New Orleans.

With Intego, instead of receiving a syringe-based unit doses, the healthcare facility will receive a vial of FDG provided by the same radiopharmacies they work with today. The vial would contain all of the activity necessary to perform the procedures for half or a full-days’ patient load. The technologist then places the tungsten-shielded vial in the power injector system and, instead of manually calibrating the doses, uses a touch screen interface to enter the assay information to gage the activity in the vial at a certain time. The system then tracks the activity in the vial as it decays to verify how much activity is available. For each individual dose, there is a dose calibrator that is integrated into the system. Before any media is injected, the system automatically takes the assay information and estimates how much volume it needs to hit that dose, and then it measures and corrects the dose for any potential error.
The system extracts two slugs of FDG from the vial until it reaches the exact prescribed amount. The technologist then presses the inject button to push the entire slug into the patient via a saline flush. The injector also has a weight-based calculation, allowing the technologist to enter a formula, allowing the system to calculate the dose.
“For FDG media, there is a lot of exposure to radiation on the part of the technologist, and technologist may deliver within plus or minus 10 or 20 percent of the prescribed dose,” said Allan Connor, director of global marketing for Molecular Imaging, MEDRAD, in an interview with Imaging Technology News. “Intego is fitted with a tungsten sealed vial, so he or she does not have to deal with vial at all. The technologist takes the vial shield in the injector and vial provide for full day of patients. We have taken away manually handling so the techs are not exposed to as much radiation and they are able to much more precisely deliver the prescribed dose.”
According to Connor, the new injector system delivers economic and clinical benefits, plus provides a more flexible and safer dispenser for both the patient and technologist.
The economic benefits Connor listed include reduced delivery charges associated with FDG, and, particularly at higher volume sites, less time spent in the lab to coordinate dosing.
Intego is said to be clinically relevant by delivering dose more precisely and reducing the number of variables involved with imaging patients, especially important when staging cancer. Connor pointed out that the physician may prescribe a larger dose such as 15 millicuries to allow for the plus or minus 10 to 20 percent variation to get at least 11 or 12 mCi onboard. Connor said, “They can now get precisely 11 or 12 mCi onboard with the patient. We think with our system they will actually deliver what they prescribe. That means lower radiation doses for the patient and the technologist.”
Eliminating the handling of the syringe adds to greater flexibility and less waste, said to Connor. “There is a sterile tubing between the patient and the injector. And residual dose is flushed with saline so you use all of the dose,” he said.
Another reported enhancement is safety. The tungsten vial shield and led-lined box on wheels are designed to reduce technologists’ exposure to radiation dose by more than 40 percent.
While the 510(k) approval process for Intego has not required Medrad to conduct clinical trials, the company has involved clinicians and technologist throughout product development. Connor points out that Medrad has worked with real technologists; as opposed to the company’s own engineers, to test the system.
Medrad is currently collaborating with the three major FDG suppliers, PETNET, Iba and Cardinal, to develop future molecular imaging products.
“The concept for this product was first developed by a physician in Zurich who approached MEDRAD,” said Connor. “Because Medrad recognizes that there’s a growing clinical need for fluid control in molecular imaging, last year we formed an organization within Medrad for this reason.”
“Our first product is for PET,” said Connor. “We are in the early stages of development of a SPECT-agent delivery system that is 2-3 years out, targeted at nuclear cardiology and other indications that are emerging. The third leg is associated with SPECT and new technologies and imaging agents emerging in SPECT. We are working with some of the pharmaceutical companies to develop these new agents and demonstrate the benefits of these new imaging technologies that will required fluid control deliver.”

For more information: www.medrad.com/products/mi

Related Content

ASNC and SNMMI Release Joint Document on Diagnosis, Treatment of Cardiac Sarcoidosis
News | Cardiac Imaging | August 18, 2017
August 18, 2017 — The American Society of Nuclear Cardiology (ASNC) has released a joint expert consensus document wi
PET/CT Tracer Identifies Vulnerable Lesions in Non-Small Cell Lung Cancer Patients

Example of a patient with an upper left lung NSCLC: A: FDG; B: FDG PET/CT; C: Planning radiotherapy based on FDG (66Gy) with BTVm (GTV), CTV and PTV; D: PET FMISO E: FMISO PET/CT; F: boost based on the FMISO PET (76Gy) with BTVh (biological hypoxic target volume) and PTV boost. Credit: QuantIF – LITIS EA 4108 – FR CNRS 3638, Henri Becquerel Cancer Center, Rouen, France

News | PET-CT | July 14, 2017
July 14, 2017 — Fluorine-18 (18F)-fluoromisonidazole (FMISO) is a positron emission tomography (PET)...
A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging

A 77-year-old male with recurrent lymph node and pulmonary metastases detected by Ga-68 PSMA PET/CT but not by conventional imaging. Graphic courtesy of the Department of Nuclear Medicine, Royal North Shore Hospital, Sydney

News | Prostate Cancer | June 15, 2017
An estimated one in seven American men will be affected by prostate cancer in their lifetime. Prostate-specific...
Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer

IMAGE OF THE YEAR: Dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer. Technology of dual-labeled PSMA-inhibitors for PET/CT imaging and fluorescence-guided intraoperative identification of metastases. This work might help to establish a new treatment regimen for more precise and sensitive pre-, intra- and post-therapeutic detection of prostate cancer.

Credit: Courtesy of A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center, Heidelberg, Germany; T. Simpfendörfer, B. Hadaschik, U. Haberkorn, Heidelberg University Hospital, Heidelberg, Germany; PET-image: Afshar-Oromieh et al., EJNMMI 2013; 40(4); STED-image: J. Matthias, German Cancer Research Center.

This study was supported by the VIP+ fund, Federal Ministry of Education & Research (BMBF), Germany.

Scientific Paper 531: “Preclinical evaluation of dual-labeled PSMA-inhibitors for the diagnosis and therapy of prostate cancer.” A. Baranski, M. Schäfer, U. Bauder-Wüst, M. Roscher, J. Schmidt, E. Stenau, L. Maier-Hein, M. Eder, K. Kopka, German Cancer Research Center (DKFZ), Heidelberg, Germany; T. Simpfendörfer, B.  Hadaschik, U. Haberkorn, University Hospital, Heidelberg, Germany. Presented at SNMMI’s 64th Annual Meeting, June 10-14, 2017, Denver, Colo.

News | Prostate Cancer | June 15, 2017
In the battle against metastatic prostate cancer, the removal of lymph node metastases using image-guided surgery may...
Axial fused 89Zr-5B1 antibody PET/CT image demonstrates focus of uptake in the liver (arrow). Focus of uptake correlates with increased liver metastasis seen on diagnostic CT (red arrow) performed 2 weeks prior

Axial fused 89Zr-5B1 antibody PET/CT image demonstrates focus of uptake in the liver (arrow). Focus of uptake correlates with increased liver metastasis seen on diagnostic CT (red arrow) performed 2 weeks prior. Image courtesy of Christian Lohrmann, Jason Lewis, Wolfgang Weber, Memorial Sloan Kettering Cancer Center; MabVax Therapeutics

News | PET-CT | June 14, 2017
Pancreatic cancer is associated with bleak five-year survival rates and limited treatment options, but new research is...
PET/CT
News | PET-CT | June 12, 2017
Philips announced that it will be showcasing molecular imaging solutions highlighting Philips’ commitment to innovation...
News | PET-CT | June 12, 2017
Siemens Healthineers has announced that the Food and Drug Administration (FDA) has cleared Biograph Horizon Flow...
Toshiba Medical launches its new Celesteion PUREViSION Edition PET/CT system to help diagnose and treat oncology patients

Toshiba Medical launches its new Celesteion PUREViSION Edition PET/CT system to help diagnose and treat oncology patients.

News | PET-CT | June 09, 2017
Oncologists have access to advanced imaging technologies for excellent cancer patient care with the new Celesteion...
News | SPECT-CT | June 08, 2017
Siemens Healthineers debuts Symbia Intevo Bold at the 2017 annual meeting of the Society of Nuclear Medicine &...
Overlay Init