Feature | June 10, 2014

Opti-SPECT/PET/CT: Five Different Imaging Systems Now Combined

Wide range of molecular imaging modalities is at researchers’ fingertips with a hybrid device dedicated for early-stage clinical trials

June 10, 2014 – Taking their pick, biomedical researchers can now conduct five different imaging studies in one scan with a state-of-the-art preclinical molecular imaging system that scientists unveiled during the Society of Nuclear Medicine and Molecular Imaging’s 2014 Annual Meeting.

The imaging device allows single photon emission tomography (SPECT), positron emission tomography (PET), X-ray computed tomography (CT), fluorescence and bioluminescence imaging — powerful imaging techniques that provide different information about anatomy and physiological processes happening within the body. With the Opti-SPECT/PET/CT system, SPECT or PET information details drug distribution and improves interpretation of optical data, while bioluminescence and fluorescence characterize additional tumor properties.  The tracers that are developed with the system will be used as a surgical guide for clinicians.

“We need to know as much as possible from our enemy: the tumor,” Frederik Beekman, Ph.D., explained.  Beekman is head of radiation technology and medical imaging and a professor at Delft University of Technology in Delft, The Netherlands. “This research proves that we can now obtain comprehensive data from five medical imaging systems in a single scan. It is minimally invasive and requires only a single dose of anesthesia.”

Opti-SPECT/PET/CT is built on a small scale for preclinical studies and allows scientists to use a gamut of imaging methods including high resolution nuclear medicine (SPECT and PET), radiological (CT) and optical imaging (fluorescence and bioluminescence). This means that information about organ function, structure and real-time physiological signals revealed within the light spectrum are all available in a synergistic fusion of advanced medical imaging. The hybrid system includes high-performance cameras and an on-board dark room. The molecular imaging platform could be used for new drug discovery, especially for imaging agents that could be used intraoperatively for patients undergoing cancer surgery.

To test the device, researchers imaged models and then mice in multiple studies using a fluorescent dye optical agent and a nuclear medicine imaging agent that combines a radioactive particle with a chemical drug compound. The agent is injected and then imaged as it homes in on and interacts with specific bodily functions. In this case, that function is angiogenesis, or the development of new blood vessels, which often proliferate as a tumor grows. Results of the study confirmed the imaging system’s functionality and proved that it was comparable to other add-on imaging platforms for preclinical studies.

For more information: www.snmmi.org

Related Content

Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
FDA Clears GE's Deep Learning Image Reconstruction Engine
Technology | Computed Tomography (CT) | April 19, 2019
GE Healthcare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) of its Deep Learning Image...
Videos | RSNA | April 03, 2019
ITN Editor Dave Fornell takes a tour of some of the most interesting new medical imaging technologies displa
Johns Hopkins Medicine First in U.S. to Install Canon Medical's Aquilion Precision
News | Computed Tomography (CT) | March 26, 2019
March 26, 2019 — Johns Hopkins Medicine now has access to the first...
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve
At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve).

At #ACC.19, Siemens unveiled a version of its go.Top platform optimized for cardiovascular imaging. The newly packaged scanner can generate the data needed to do CT-based FFR (fractional flow reserve). Photo by Greg Freiherr

Feature | Cardiac Imaging | March 22, 2019 | By Greg Freiherr
Reflecting a trend toward the increased use of...
Improving Molecular Imaging Using a Deep Learning Approach
News | Nuclear Imaging | March 21, 2019
Generating comprehensive molecular images of organs and tumors in living organisms can be performed at ultra-fast speed...
Researchers Use Radiomics to Predict Who Will Benefit from Chemotherapy
News | Radiomics | March 21, 2019
Using data from computed tomography (CT) images, researchers may be able to predict which lung cancer patients will...
HeartFlow Analysis Successfully Stratifies Heart Disease Patients at One Year
News | CT Angiography (CTA) | March 19, 2019
Late-breaking results confirm the HeartFlow FFRct (fractional flow reserve computed tomography) Analysis enables...