Feature | June 20, 2013

Molecular Imaging Enlists Prostate Enzyme To Detect Metastases

Prostate-specific membrane antigen (PSMA) could become the hallmark of a new generation of biomarkers for both imaging and therapy of prostate cancer

June 20, 2013 – No matter where they have hidden, metastatic prostate cancer cells still express some of the same signaling as normal prostate cells; in some cases even more so, as with the PSMA enzyme. Harnessing this enzyme could mean the beginning of a new platform for prostate cancer detection, staging, treatment and post-treatment monitoring, say researchers at the Society of Nuclear Medicine and Molecular Imaging’s 2013 Annual Meeting.

“There are currently no ideal imaging techniques in clinical practice that are specific to prostate cancer,” said Shankar Vallabhajosula, Ph.D., a professor of radiochemistry from the department of radiology at Weill Cornell Medical College in New York, N.Y. “We regularly use bone scans to image metastatic prostate cancer, but bone scans are not specific for these tumors. This study focuses on a novel imaging agent that binds to PSMA, an enzyme expressed by prostate epithelial cells. We don’t really know what its role is in prostate cancer, but imaging agents using either anti-PSMA antibodies or small molecules that specifically bind to the enzymatic site of PSMA are capable of detecting both primary prostate cancer cells and secondary metastases in other organs. This development could lead to highly specific prostate cancer imaging and potentially optimal care for patients.”

In two preliminary phase I clinical studies involving PSMA, also known as glutamate carboxypeptidase II (GCPII) or NAAG peptidase, researchers evaluated a novel imaging agent comprising a small molecule of amino acids, called MIP-1404 (based on glutamate-urea-glutamate pharmacophore) radiolabeled with technetium-99m (Tc-99m), a radioactive atom that can be detected by single photon emission computed tomography (SPECT) that provides functional imaging of prostate cancer. Tc-99m MIP-1404 SPECT imaging produces a scan or a map of where this novel agent is bound to PSMA enzyme in metastatic prostate tumors throughout the body. Tc-99m MIP-1404 represents a much more commercially and clinically viable agent because it is easy to manufacture and has a faster rate of distribution throughout the body and clearance from the body, unlike imaging agents based on anti-PSMA monoclonal antibodies that were cumbersome and require long wait times to obtain images.

Results of the study revealed that Tc-99m MIP-1404 was well distributed and ready for imaging as soon as one hour after injection for localization of cancer lesions in bone and lymph nodes. In a majority of cases, Tc-99m MIP-1404 pointed out more lesions than standard bone imaging.

“This agent could one day be a molecular imaging biomarker not just for screening patients with prostate cancer and metastases but also for monitoring their response to subsequent treatment,” said Vallabhajosula. “In time, it could also be formulated as a therapeutic radioactive drug.”

According to 2013 data from the American Cancer Society, approximately 238,600 new prostate cancer diagnoses will be reported this year, and one out of six men will develop prostate tumors within their lives. Approximately 29,700 men are expected to die of the disease this year.

Tc-99m MIP-1404 (developed by Molecular Insight Pharmaceuticals Inc., a wholly owned subsidiary of Progenics Pharmaceuticals Inc.) is now in a phase II international multicenter study. Further studies and U.S. Food and Drug Administration (FDA) approval are necessary before this radiopharmaceutical could be introduced to general clinical practice for prostate cancer imaging.

Scientific Paper 281: Shankar Vallabhajosula, Joseph Osborne, Anastasia Nikolopoulou, Irina Lipai, Scott Tagawa, Douglas Scherr, Stanley Goldsmith; Radiology, Weill Cornell Medical College, New York, NY; John Joyal, Thomas Armor, John Babich, Molecular Insight Pharmaceuticals Inc., Cambridge, Mass., “PSMA targeted SPECT imaging biomarker to detect local and metastatic prostate cancer (PCa): Phase I studies with 99mTc-MIP-1404,” SNMMI’s 60th Annual Meeting, June 8–12, 2013, Vancouver, British Columbia.

 

For more information: www.snmmi.org

Related Content

Stereotactic Radiosurgery Effective for Pediatric Arteriovenous Malformation Patients
News | Radiation Therapy | April 19, 2019
Ching-Jen Chen, M.D., of the neurosurgery department at the University of Virginia (UVA) Health System, was the winner...
Video Plus Brochure Helps Patients Make Lung Cancer Scan Decision

Image courtesy of the American Thoracic Society

News | Lung Cancer | April 19, 2019
A short video describing the potential benefits and risks of low-dose computed tomography (CT) screening for lung...
Surgically Guided Brachytherapy Improves Outcomes for Intracranial Neoplasms
News | Brachytherapy Systems | April 18, 2019
Peter Nakaji, M.D., FAANS, general practice neurosurgeon at Barrow Neurological Institute, presented new research on...
Check-Cap Initiates U.S. Pilot Study of C-Scan for Colorectal Cancer Screening
News | Colonoscopy Systems | April 15, 2019
Check-Cap Ltd. has initiated its U.S. pilot study of the C-Scan system for prevention of colorectal cancer through...
Deep Lens Closes Series A Financing for Digital AI Pathology Platform
News | Digital Pathology | April 09, 2019
Digital pathology company Deep Lens Inc. announced the closing of a $14 million Series A financing that will further...
Uterine Fibroid Embolization Safer and as Effective as Surgical Treatment
News | Interventional Radiology | April 05, 2019
Uterine fibroid embolization (UFE) effectively treats uterine fibroids with fewer post-procedure complications compared...
News | Biopsy Systems | March 29, 2019
Dune Medical Devices has just completed the first in-man cases for Smart Biopsy, its percutaneous soft tissue biopsy...
Artificial Intelligence Can Improve Emergency X-ray Identification of Pacemakers
News | X-Ray | March 29, 2019
A research team from Imperial College London believes a new software could speed up the diagnosis and treatment of...
Interventional Radiology Treatment for Tennis Elbow Reduces Pain and Inflammation

Image courtesy of Yuji Okuno

News | Interventional Radiology | March 29, 2019
Tennis elbow, a painful chronic condition that affects up to 3 percent of U.S. adults, can be effectively treated...
NIH Study of Brain Energy Patterns Provides New Insights into Alcohol Effects

NIH scientists present a new method for combining measures of brain activity (left) and glucose consumption (right) to study regional specialization and to better understand the effects of alcohol on the human brain. Image courtesy of Ehsan Shokri-Kojori, Ph.D., of NIAAA.

News | Neuro Imaging | March 22, 2019
March 22, 2019 — Assessing the patterns of energy use and neuronal activity simultaneously in the human brain improve