Feature | Breast Imaging | April 06, 2020 | By Samir Parikh

Leveraging Artificial Intelligence to Enhance the Radiologist and Patient Experience

The role of AI in aiding breast mammography

A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms

A recent study earlier this year in the journal Nature, which included researchers from Google Health London, demonstrated that artificial intelligence (AI) technology outperformed radiologists in diagnosing breast cancer on mammograms. This study is the latest to fuel ongoing speculation in the radiology industry that AI could potentially replace radiologists. However, this notion is simply sensational.

Consider the invention of autopilot. Despite its existence, passengers still rely on pilots, in conjunction with autopilot technology, to travel. Similarly, radiologists can combine their years of medical knowledge and personal patient relationships with AI technology to improve the patient and clinician experience. To examine this in greater detail, consider the scenarios in which AI is making, or can make, a positive impact. 

Identifying Dense Breast Tissue

Measuring a woman’s breast density is critical in assessing her risk for developing breast cancer, as women with very dense breasts are four to five times more likely to develop breast cancer than women with less dense breasts.1,2 However, as radiologists know, very dense breast tissue can create a “masking effect” on a traditional 2-D image, since the glandular tissue color matches that of cancer. As a result, a woman’s breast density classification can influence the type of breast screening exam she should get. For example, digital breast tomosynthesis (DBT) technology has proven as superior for all women, including those with dense breasts. 

Categorizing density, though, can traditionally be a subjective process — radiologists must manually view the breast images and make a determination, and in some cases two radiologists may disagree on a classification. This is where AI technology can make a positive impact. Through a collection of images in a database and consistent algorithms, AI technology can help unify breast density classification, especially for images teetering between a B and C BI-RADS score

While AI technology may offer the potential to provide more consistent BI-RAD scores, the role of the radiologist is still very necessary — it’s the radiologist who would know the patient’s full profile that could impact clinical care. For example, this can include other risk factors their patient may have, such as family history of breast cancer, to personal beliefs about various screening options and beyond — all of which are external factors that could influence how to manage a particular patient’s journey of care. 

Improving Radiology Workflow

In addition to helping assist with breast density classification, AI technology can also help improve workflow for radiologists which can, in turn, impact patient care. Although it is clinically proven to detect more invasive breast cancers, DBT technology produces a much larger amount of data and larger data files compared to 2-D mammography, creating workflow challenges for radiologists. However, AI technology now exists that can help reduce reading time for radiologists by identifying the critical parts of 3-D data worth preserving. The technology can then cut down on the number of images to read while maintaining image quality. The AI technology does not take over the radiologists’ entire role of reading the images and providing a diagnosis to patients — it simply calls to their attention the higher risk images and cases that require urgent attention, allowing radiologists to prioritize cases in need of more serious and immediate scrutiny.  

There are many more challenges that radiologists face today in which AI technology can potentially make an impact in the future. For example — the length of time between a woman’s screening and the delivery of her results could use improvement, especially since that waiting period can elicit very high emotions. The important thing to realize for now, though, is that AI technology plays an important and positive role in radiology today, and the best outcomes will occur when radiologists and AI technology are not mutually exclusive but rather work in practice together.

Samir Parikh, global VP or HologicSamir Parikh is the global vice president of research and development for Hologic. In this role, he is responsible for leading and driving innovative advanced solutions across the continuum of care to drive sustainable growth of the breast and skeletal health division.

 

References:

1.  Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 356(3):227-36, 2007.

2. Yaghjyan L, Colditz GA, Collins LC, et al. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J Natl Cancer Inst. 103(15):1179-89, 2011.

Related Content

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire)

AIR Recon DL delivers shorter scans and better image quality (Photo: Business Wire).

News | Artificial Intelligence | May 29, 2020
May 29, 2020 — GE Healthcare announced U.S.
AI has the potential to help radiologists improve the efficiency and effectiveness of breast cancer imaging

Getty Images

Feature | Breast Imaging | May 28, 2020 | By January Lopez, M.D.
Headlines around the world the past several months declared that...
An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019.

An example of DiA'a automated ejection fraction AI software on the GE vScan POCUS system at RSNA 2019. Photo by Dave Fornell.

News | Ultrasound Imaging | May 26, 2020
May 12, 2020 — DiA Imaging Analysis, a provider of AI based ultrasound analysis solutions, said it received a governm
a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of pol

a Schematic of the system. The entire solid tumour is illuminated from four sides by a four-arm fibre bundle. A cylindrically focused linear array is designed to detect optoacoustic signals from the tumour. In vivo imaging is performed in conical scanning geometry by controlling the rotation and translation stages. The sensing part of the transducer array and the tumour are submerged in water to provide acoustic coupling. b Maximum intensity projections of the optoacoustic reconstruction of a phantom of polyethylene microspheres (diameter, 20 μm) dispersed in agar. The inset shows a zoomed-in view of the region boxed with a yellow dashed line. In addition, the yellow boxes are signal profiles along the xy and z axes across the microsphere centre, as well as the corresponding full width at half-maximum values. c Normalized absorption spectra of Hb, HbO2 and gold nanoparticles (AuNPs). The spectrum for the AuNPs was obtained using a USB4000 spectrometer (Ocean Optics, Dunedin, FL, USA), while the spectra for Hb and HbO2 were taken from http://omlc.org/spectra/haemoglobin/index.html. The vertical dashed lines indicate the five wavelengths used to stimulate the three absorbers: 710, 750, 780, 810 and 850 nm. Optoacoustic signals were filtered into a low-frequency band (red) and high-frequency band (green), which were used to reconstruct separate images.

News | Breast Imaging | May 26, 2020
May 26, 2020 — Breast cancer is the most common cancer in women.
 Recently the versatility of mixed and augmented reality products has come to the forefront of the news, with an Imperial led project at the Imperial College Healthcare NHS Trust. Doctors have been wearing the Microsoft Hololens headsets whilst working on the front lines of the COVID pandemic, to aid them in their care for their patients. IDTechEx have previously researched this market area in its report “Augmented, Mixed and Virtual Reality 2020-2030: Forecasts, Markets and Technologies”, which predicts th

Doctors wearing the Hololens Device. Source: Imperial.ac.uk

News | Artificial Intelligence | May 22, 2020
May 22, 2020 — Recently the versatility of
Phone call and linkage-to-care-based intervention increases mammography uptake among primary care patients at an urban safety-net hospital

Getty Images

News | Mammography | May 22, 2020
May 22, 2020 — Telephone outreach coupled with scheduling assistance significantly increased...
In response to the significant healthcare delivery changes brought on by COVID-19, Varian has launched new capabilities for its Noona software application, a powerful tool designed to engage cancer patients in their care for continuous reporting and symptom monitoring.
News | Radiation Oncology | May 21, 2020
May 21, 2020 — In response to the significant healthcare delivery changes brought on by...
NucleusHealth, a provider of cloud-based medical image management technology and teleradiology services, announced today that it has received Conformité Européene (CE) Mark approval for Nucleus.io.
News | Teleradiology | May 21, 2020
May 21, 2020 — NucleusHealth, a provider of cloud-based medical image management technology and teleradiology service