Feature | June 08, 2012

Childhood CT Scans Linked to Leukemia, Brain Cancer Later in Life

June 8, 2012 — Children and young adults scanned multiple times by computed tomography (CT) have a small increased risk of leukemia and brain tumors in the decade following their first scan. These findings are from a study of more than 175,000 children and young adults that was led by researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, and at the Institute of Health and Society, Newcastle University, England.

The researchers emphasize that when a child suffers a major head injury or develops a life-threatening illness, the benefits of clinically appropriate CT scans should outweigh future cancer risks. The results of the study were published online June 7 in The Lancet.

"This cohort study provides the first direct evidence of a link between exposure to radiation from CT and cancer risk in children," said senior investigator Amy Berrington de González, Ph.D., division of cancer epidemiology and genetics, NCI. "Ours is the first population-based study to capture data on every CT scan to an individual during childhood or young adulthood, and then measure the subsequent cancer risk."

Despite the elevation in cancer risk, these two malignancies are relatively rare and the actual number of additional cases caused by radiation exposure from CT scans is small. The most recent (2009) U.S. annual cancer incidence rates for children from birth through age 21 for leukemia and brain and other nervous system cancers are 4.3 per 100,000 and 2.9 per 100,000, respectively. The investigators estimate that for every 10,000 head CT scans performed on children 10 years of age or younger, one case of leukemia and one brain tumor would occur in the decade following the first CT beyond what would have been expected had no CT scans been performed.

CT scans deliver a dose of ionizing radiation to the body part being scanned and to nearby tissues. Even at relatively low doses, ionizing radiation can break the chemical bonds in DNA, causing damage to genes that may increase a person’s risk of developing cancer. Children typically face a higher risk of cancer from ionizing radiation exposure than do adults exposed to similar doses.

The investigators obtained CT examination records from radiology departments in hospitals across Britain and linked them to data on cancer diagnoses and deaths. The study included people who underwent CT scans at British National Health Service hospitals from birth to 22 years of age between 1985 and 2002. Information on cancer incidence and mortality from 1985 through 2008 was obtained from the National Health Service Central Registry, a national database of cancer registrations, deaths and emigrations.

Approximately 60 percent of the CT scans were of the head, with similar proportions in males and females. The investigators estimated cumulative doses from the CT scans received by each patient, and assessed the subsequent cancer risk for an average of 10 years after the first CT. The researchers found a clear relationship between the increase in cancer risk and increasing cumulative dose of radiation. A three-fold increase in the risk of brain tumors appeared following a cumulative absorbed dose to the head of 50 to 60 mGy (unit of estimated absorbed dose of ionizing radiation). Similarly, a three-fold increase in the risk of leukemia appeared after the same dose to bone marrow. The comparison group consisted of individuals who had cumulative doses of less than 5 mGy to the relevant regions of the body.

The absorbed dose from a CT scan depends on factors including age at exposure, sex, examination type, and year of scan. Broadly speaking, two or three CT scans of the head using current scanner settings would be required to yield a dose of 50 to 60 mGy to the brain. The same dose to bone marrow would be produced by five to 10 head CT scans, using current scanner settings for children under age 15.

In countries like the United States and Britain, the use of CT scans in children and adults has increased rapidly since their introduction 30 years ago. Due to efforts by medical societies, government regulators, and CT manufacturers, scans performed on young children in 2012 can have 50 percent lower radiation doses, compared to scans carried out in the 1980s and 1990s, say the investigators. However, the amount of radiation delivered during a single CT scan can still vary greatly and is often up to 10 times higher than that delivered in a conventional X-ray procedure.

“CT can be highly beneficial for early diagnosis, for clinical decision-making and for saving lives. However, greater efforts should be made to ensure clinical justification and to keep doses as low as reasonably achievable,” said Mark S. Pearce, Ph.D., Institute of Health and Society, Newcastle University, lead author of the study.

For more information: www.cancer.gov/cancertopics/causes/radiation/radiation-risks-pediatric-CT

Related Content

New Data Demonstrates Safety Profile of GammaTile Therapy for Various Brain Tumors
News | Brachytherapy Systems | June 18, 2019
GT Medical Technologies Inc. announced the presentation of clinical data from a prospective study of GammaTile Therapy...
Canon Medical Receives FDA Clearance for AiCE Reconstruction Technology for CT
Technology | Computed Tomography (CT) | June 18, 2019
Canon Medical Systems USA Inc. has received 510(k) clearance on its new deep convolutional neural network (DCNN) image...
Black Men Less Likely to Adopt Active Surveillance for Low-Risk Prostate Cancer
News | Prostate Cancer | June 17, 2019
A new study reveals black men are less likely than white men to adopt an active surveillance strategy for their...
International Working Group Releases New Multiple Myeloma Imaging Guidelines

X-ray images such as the one on the left fail to indicate many cases of advanced bone destruction caused by multiple myeloma, says the author of new guidelines on imaging for patients with myeloma and related disorders. Image courtesy of Roswell Park Comprehensive Cancer Center.

News | Computed Tomography (CT) | June 17, 2019
An International Myeloma Working Group (IMWG) has developed the first set of new recommendations in 10 years for...
Aidoc Earns FDA Approval for AI for C-spine Fractures
Technology | Artificial Intelligence | June 11, 2019
Radiology artificial intelligence (AI) provider Aidoc announced the U.S. Food and Drug Administration (FDA) has cleared...
SCCT Announces 2019 Gold Medal Award Recipients
News | Computed Tomography (CT) | June 05, 2019
The Society of Cardiovascular Computed Tomography (SCCT) will present the 2019 Gold Medal Award to Jonathon Leipsic, M....
Applications Open for ASRT Foundation and Canon Medical's Safety FiRsT Grant Program
News | Radiation Dose Management | May 31, 2019
The ASRT Foundation and Canon Medical Systems are now accepting applications for the 2019 Safety FiRsT grant program,...
AI Biomarker Demonstrates High Predictive Power for Lung Cancer Immunotherapy
News | Artificial Intelligence | May 31, 2019
Lunit announced an abstract presentation of its artificial intelligence (AI) precision medicine research portfolio at...
Einstein Healthcare Network found that use of automated power injectors reduced CT contrast extravasation rates over a 30-month period.

Einstein Healthcare Network found that use of automated power injectors reduced CT contrast extravasation rates over a 30-month period.

Feature | Computed Tomography (CT) | May 30, 2019 | By Jeff Zagoudis
As of 2015, approximately 79 million computed tomography (CT) scans were performed each year in the U.S.
Sponsored Content | Webinar | Computed Tomography (CT) | May 30, 2019
This webinar will explain technical considerations when performing cardiac CT angiography in pediatric patients.