Feature | Radiation Dose Management | July 15, 2019 | Niki Fitousi, Ph.D., and An Dedulle

Can CT Image Truncation Cause False Dose Alerts?

Research study suggests image truncation could lead to a larger patient being falsely identified as "standard-sized" and generate a dose alert

Example of an intentionally truncated CT image

Figure 1: Example of an intentionally truncated CT image. The truncation percentage was calculated as the ratio of the patient border touching the field of view to the total patient border (red/(read+blue)). Image courtesy of Qaelum.

Example calculation from truncated images.

Figure 2: Example calculation from truncated images. A message indicates that Water Equivalent Diameter (WED) and Size Specific Dose Estimates (SSDE) should be evaluated with care, as the calculation may not be accurate (screenshot from DOSE, Qaelum).

One of the main benefits of a radiation dose management system is the possibility to automatically generate alerts when the dose exceeds certain thresholds. These dose thresholds are mainly based on national Diagnostic Reference Levels (DRLs), which are defined for a standard-sized patient. An advanced dose management system offers the possibility to automatically select the group of patients by defining a patient size range in terms of weight, effective diameter or Water Equivalent Diameter (WED). As weight is not always filled in, WED, an attenuation-based metric, has become the favourite parameter to indicate patient size. But how accurately is WED calculated? Are we sure that our group of standard-sized patients does not include patients with wrong size calculation? Especially when everything happens automatically, how can we know that a high dose alert does not indicate a bigger patient for whom the size was not correctly calculated?

Automatic calculation of WED by a dose management system can be performed from the computed tomography (CT) localizer image or the reconstructed axial images. The difficulty in using the localizer lies mainly in the different calibration of pixel values in terms of water attenuation between vendors/scanner models/software versions, the inclusion of table attenuation, the use of edge-enhancement filters, and the wrong positioning that can magnify or minify the patient’s image. The reconstructed axial CT image is presented as an accurate way to measure the WED of the patient on the condition that the full patient tissue is included in the image.1,2

But what happens if the axial image is truncated? Can it still be used to estimate the WED?

Our research team performed a study to investigate the effect of image truncation on the calculation of water equivalent diameter for chest and abdomen CT scans. We used a set of CT examinations (286 thorax and 222 abdomen CTs) for which the middle slice was not truncated, and then we intentionally truncated the images up to 50 percent (Figure 1). Non-truncated WED values were compared to truncated values.

The results indicated that for truncation percentages below 20 percent, the underestimation of the WED was rather small and no correction was needed. For larger truncation percentages, the difference between the non-truncated and truncated WED became larger, and correction factors3 could improve the calculation of WED. The results were presented at the European Congress of Medical Physics (ECMP 2018)4.

The study was then broadened to evaluate the effect of truncation on the Size Specific Dose Estimates (SSDE) calculation (Figure 2). The results will be presented at the 2019 American Association of Physicists in Medicine (AAPM) annual meeting.

Although defining the Diagnostic Reference Levels for a specific patient size range allows the exclusion of overweight and obese patients, the truncation of the image could lead to a bigger patient being falsely identified as “standard-sized” and generate a dose alert. Knowing the effects of truncation on the calculation can assist in excluding dose alerts from the daily workload.

For more information: www.qaelum.com

References

  1. AAPM Report No 204. Size-Specific Dose Estimates (SSDE) in pediatric and adult body CT examinations. Report of AAPM Task Group 204. American Association of Physicists in Medicine, 2011.
  2. AAPM Report No 220. Use of Water Equivalent Diameter for Calculating Patient Size and Size-Specific Dose Estimates (SSDE) in CT Report of AAPM Task Group 220. American Association of Physicists in Medicine, 2014.
  3. Anam et al. The Size-Specific Dose Estimate (SSDE) for truncated computed tomography images. Radiation Protection Dosimetry, 175, 313-320, 2017.
  4. Dedulle et al. Influence of image truncation on the calculation of Water Equivalent Diameter in Computed Tomography examinations. European Congress of Medical Physics, ECMP 2018, 23 – 25 August 2018, Copenhagen, Denmark.

Author's Note: Niki Fitousi, Ph.D., is head of research at Qaelum. An Dedulle is a Ph.D. researcher for Qaelum.

Related Content

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief.

The interior of the German air force Airbus A-310 Medivac in Cologne, Germany, before its departure to Bergamo, Italy, March 28 to being ferrying COVID-19 patients to Germany for treatment to aid the Italians, whose healthcare system has been overwhelmed by the rapid spread of the coronavirus pandemic. Bundeswehr Photo by Kevin Schrief. Find more images from the COVID-19 pandemic.

 

Feature | Coronavirus (COVID-19) | April 08, 2020 | By Melinda Taschetta-Millane and Dave Fornell
In an effort to keep the imaging field updated on the latest information being released on coronavirus (COVID-19), th
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2  The first of three clinical scenarios presented to the panel with final recommendations. Mild features refer to absence of significant pulmonary dysfunction or damage. Pre-test probability is based upon background prevalence of disease and may be further modified by individual’s exposure risk. The absence of resource constraints corresponds to sufficient availability of personnel, personal protective equipment, COVID-19 testing, hospital beds, and/or ve

 The first of three clinical scenarios presented to the panel with final recommendations. Mild features refer to absence of significant pulmonary dysfunction or damage. Pre-test probability is based upon background prevalence of disease and may be further modified by individual’s exposure risk. The absence of resource constraints corresponds to sufficient availability of personnel, personal protective equipment, COVID-19 testing, hospital beds, and/or ventilators with the need to rapidly triage patients. Contextual detail and considerations for imaging with CXR (chest radiography) versus CT (computed tomography) are presented in the text. (Pos=positive, Neg=negative, Mod=moderate). [Although not covered by this scenario and not shown in the figure, in the presence of significant resources constraints, there is no role for imaging of patients with mild features of COVID-19.] Image courtesy of the journal Radiology

News | Coronavirus (COVID-19) | April 07, 2020
April 7, 2020 — A multinational consens...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Chest CT findings of pediatric patients with COVID-19 on transaxial images. (a) Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe

Chest CT findings of pediatric patients with COVID-19 on transaxial images. Male, 2 months old, 2 days after symptom onset. Patchy ground-glass opacities GGO in the right lower lobe. Image courtesy of Radiology: Cardiothoracic Imaging

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Children and teenagers with COVID-19...
#COVID19 #Coronavirus #2019nCoV #Wuhanvirus #SARScov2 Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

Sonogram taken under rib cage shows liver (grey) with curved diaphragm-lung border (white). Arrows point to vertical B lines (white) demonstrating diseased lung tissue. The more B lines the worse the disease. Healing is measured by reduction in the number of B lines.

News | Coronavirus (COVID-19) | April 06, 2020
April 6, 2020 — Robert L.
Varian received FDA clearance for its Ethos therapy in February 2020. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Varian received FDA clearance for its Ethos therapy in February 2020, shown here displayed for the first time at ASTRO 2019. It is an adaptive intelligence solution that uses onboard AI in the treatment system to take the cone beam CT imaging on the system, compare it to the treatment plan and deliver an entire adaptive treatment plan in a typical 15-minute treatment time slot, from patient setup through treatment delivery.

Feature | Treatment Planning | April 03, 2020 | Dave Fornell, Editor
The traditional treatment planning process takes days to create an optimized radiation therapy delivery plan, but new
Recommended best practices for nuclear imaging departments under the COVIF-19 pandemic have been issues by the ASNC and SNMMI. #COVID19 #ASNC #SNMMI #Coronavirus #SARScov2
News | Coronavirus (COVID-19) | April 03, 2020
April 3, 2020 — A new guidance document on best practices to maintain safety and minimize contamination in nuclear im
Rising concerns over radiation overexposure teamed with a growing focus on improving the quality of patient care are two key drivers of today’s radiation dose management market. 

Rising concerns over radiation overexposure teamed with a growing focus on improving the quality of patient care are two key drivers of today’s radiation dose management market. 

Feature | Radiation Dose Management | April 02, 2020 | By Melinda Taschetta-Millane
Rising concerns over...