Feature | Artificial Intelligence | April 03, 2019 | Greg Freiherr

Artificial Intelligence Helps Detect Breast Cancer and Saves Time

Study of smart algorithm with tomosynthesis is “triple win”

A smart algorithm developed by iCAD

A smart algorithm developed by iCAD outlines and scores a suspicious lesion seen in an image created using digital breast tomography. Displayed is the probability calculated by the algorithm that the outlined area includes a cancerous lesion. Image courtesy of Emily Conant, M.D.

 

Editor's Note: This article was updated following the SBI symposium.

 

In a study evaluating the use of artificial intelligence (AI) as a tool for breast cancer screening, increased sensitivity and specificity were achieved with AI when reading digital breast tomosynthesis (DBT) while reading time was reduced. Study leader, Emily Conant, M.D., framed the results as a triple win.

“We detected more cancers; decreased false positives; and decreased reading time,” said Conant, radiology professor in the Perelman School of Medicine and division chief of breast imaging at the Hospital of the University of Pennsylvania (HUP). She is scheduled to present details of the study April 4 at the Society for Breast Imaging (SBI)/American College of Radiology Breast Imaging Symposium in a talk entitled “Concurrent Use of Deep Learning Based Artificial Intelligence Improves Detection of Breast Cancer and Reading Time with Digital Breast Tomosynthesis in Women with Dense and Non-Dense Breasts.”

In an interview with ITN before the symposium, Conant described details that underscored the substantial impact that the algorithm can have on breast imagers. In regard to a particular case (see image above), without AI, 12 of 24 readers in the study detected the cancer with an average reading time of 72.7 seconds.  With AI, 22 of 24 readers detected the cancer with an average reading time of 45.6 seconds.

“So ten more readers detected the cancer while also reducing their reading time on average 37% (27.1 seconds),” she said.

The test data set was “enriched” with more images of pathology than would occur in a typical screening population. Radiologists served as their own controls. They read the same images either with or without AI, waiting four weeks between readings so they would not have an advantage that might have been gained from previous interpretations.

“They go back to work and see lots of other cases. (After four weeks), they don’t remember how they read the earlier cases,” she said.

The results, she said, were provided to iCAD, developer of the AI algorithm, to support its FDA application for product marketing of the software.

 

New AI Better Than Earlier CAD Software

The great advantage of using the AI algorithm, she said, is that not only did radiologists find more cancers but they did so without increasing the number of false positives. And they did the work substantially faster. This is much different than what happened with CAD (computer-assisted detection) software developed for full field digital mammography (FFDM)

A major problem with CAD software was the high number of false positives that came from its use. CAD software also tended to slow rather than accelerate interpretations.

In contrast to CAD software, the AI algorithm tested at HUP was applied to tomosynthesis rather than FFDM; was used at the same time radiologists’ interpreted images; and calculated probabilities that the suspicious lesions were cancerous, rather than simply marking suspected lesions for radiologists to consider after they had already interpreted the image.

“The concept behind this AI is that you will have it from the ‘get-go.’ It can help you rapidly navigate to slices that have concerning lesions,” Conant said.

 

AI Efficiency Varies With Breast Density

One unexpected outcome from the HUP research was that the algorithm shortened reading times more for dense than non-dense breast.  Average reading times dropped from 62.5 seconds to 32.8 seconds when reading images of non-dense breast – and from 65.8 seconds to 28 seconds for images of dense breasts. 

Conant attributes the extra time for reading non-dense images to the greater complexity associated with images of this type. Although dense breasts can obscure pathology, they may also contain fewer structures that need to be analyzed. 

“When it comes to reading time, sometimes there is not a lot to look at with a dense breast.  If you have a breast that is less dense and has a lot of little nodules and calcifications, it can be a more complex texture and, therefore, require a longer reading time,” she said.

The differences in reading time between images of different breast types, however, were relatively small, averaging just a few seconds.  Similarly sensitivity increased with AI assistance slightly more for dense than nondense breasts as did specificity.  Again the differences were slight.

The key takeaway from the research, according to Conant, is that – regardless of breast density – the use of artificial intelligence, when applied to screening for breast cancer, can reduce the time needed to read DBT while increasing the detection of cancer.

 

Greg Freiherr is a contributing editor to Imaging Technology News (ITN). Over the past three decades, he has served as business and technology editor for publications in medical imaging, as well as consulted for vendors, professional organizations, academia and financial institutions.

 

Related Content

The Evolution of Digital Breast Tomosynthesis

VIDEO: How iCAD Uses AI to Speed Breast Tomosynthesis

3-D Tomosynthesis: Where Are We Now?

 

 

Related Content

Warm Springs Health & Wellness Center Implements Digisonics Solution for OB Ultrasound
News | Ultrasound Women's Health | June 17, 2019
Warm Springs Health & Wellness Center in Warm Springs, Ore., has selected the Digisonics OB PACS (picture archiving...
Fujifilm Announces Nationwide Breast Health Campaign With Mobile Mammography Coach

At the center of the campaign, Fujifilm will be traveling around the U.S. with its "Aspire to Be Fearless" mobile mammography coach to provide educational opportunities for clinicians, raise awareness about the importance of screening and will be providing mammograms to the underserved population in key locations.

News | Mammography | June 14, 2019
Fujifilm Medical Systems U.S.A. Inc. announced a nationwide awareness campaign titled ‘Aspire to Be Fearless’ focused...
M*Modal and Community Health Network Partner on AI-powered Clinical Documentation
News | PACS Accessories | June 13, 2019
M*Modal announced that the company and Community Health Network (CHNw) are collaborating to transform the patient-...
Ikonopedia Showcases Risk Assessment and Resolution Manager Tools at SIIM and AHRA
News | Mammography Reporting Software | June 13, 2019
Ikonopedia will showcase its suite of structured breast reporting and Mammography Quality Standards Act (MQSA)...
Sponsored Content | Videos | Radiology Imaging | June 13, 2019
In an interview with itnTV, Henry Izawa, vice president, modality solutions and clinical affairs, Fujifilm Medical Sy
iCAD Introduces ProFound AI for 2D Mammography in Europe
News | Artificial Intelligence | June 13, 2019
iCAD Inc. announced the launch of ProFound AI for 2D Mammography in Europe. This software is the latest addition to...
Three Palm Software Releases WorkstationOne Version 1.8.8
Technology | Mammography Reporting Software | June 12, 2019
Three Palm Software announced the release of the 1.8.8 version of its breast imaging workstation, WorkstationOne. This...
The Current Direction of Healthcare Reform Explained by CMS Administrator Seema Verma
News | Radiology Business | June 11, 2019
June 11, 2019 — Centers for Medicare and Medicaid Services (CMS) Administrator Seema Verma addressed the American Med
Aidoc Earns FDA Approval for AI for C-spine Fractures
Technology | Artificial Intelligence | June 11, 2019
Radiology artificial intelligence (AI) provider Aidoc announced the U.S. Food and Drug Administration (FDA) has cleared...
Medivis SurgicalAR Gets FDA Clearance
Technology | Virtual and Augmented Reality | June 10, 2019
Medivis announced that its augmented reality (AR) technology platform for surgical applications, SurgicalAR, has...