News | Artificial Intelligence | October 10, 2017

Compiled from scans of more than 30,000 patients, datasets are intended to help train artificial intelligence algorithms to aid radiologists in diagnosis

NIH Clinical Center Releases 100,000-Plus Chest X-ray Datasets to Scientific Community

October 10, 2017 — The National Institutes of Health (NIH) Clinical Center recently released over 100,000 anonymized chest X-ray images and their corresponding data to the scientific community. The release will allow researchers across the country and around the world to freely access the datasets and increase their ability to teach computers how to detect and diagnose disease. Ultimately, this artificial intelligence mechanism can lead to clinicians making better diagnostic decisions for patients. 

NIH compiled the dataset of scans from more than 30,000 patients, including many with advanced lung disease. Patients at the NIH Clinical Center, the nation’s largest hospital devoted entirely to clinical research, are partners in research and voluntarily enroll to participate in clinical trials. With patient privacy being paramount, the dataset was rigorously screened to remove all personally identifiable information before release.

Reading and diagnosing chest X-ray images may be a relatively simple task for radiologists but, in fact, it is a complex reasoning problem that often requires careful observation and knowledge of anatomical principles, physiology and pathology. Such factors increase the difficulty of developing a consistent and automated technique for reading chest X-ray images while simultaneously considering all common thoracic diseases.

By using this free dataset, the hope is that academic and research institutions across the country will be able to teach a computer to read and process extremely large amounts of scans, to confirm the results radiologists have found and potentially identify other findings that may have been overlooked.

In addition, this advanced computer technology may also be able to:

  • Help identify slow changes occurring over the course of multiple chest X-rays that might otherwise be overlooked;
  • Benefit patients in developing countries that do not have access to radiologists to read their chest X-rays; and 
  • Create a virtual radiology resident that can later be taught to read more complex images like computed tomography (CT) and magnetic resonance imaging (MRI) in the future.

The NIH research hospital anticipates adding a large dataset of CT scans to be made available as well in the coming months.

For more information: www.clinicalcenter.nih.gov

 

Related Content on Artificial Intelligence in Radiology

Artificial Intelligence Could Learn From the Medical Imaging Goldmine of the NHS Archives

VIDEO: Machine Learning and the Future of Radiology

How Artificial Intelligence Will Change Medical Imaging

Must Radiologists Be Prepared To Delegate ... To Smart Machines?


Related Content

Feature | Cardiac Imaging | Kyle Hardner

Advances in coronary CT angiography (CCTA) have reached the point where image quality and AI capabilities are creating ...

Time February 06, 2026
arrow
News | Ultrasound Women's Health

Feb. 5, 2026 — BrightHeart, a global provider of AI-driven prenatal ultrasound, has announced the availability of its B ...

Time February 05, 2026
arrow
News | Lung Imaging

Feb. 3, 2026 — RevealDx, a leader in the characterization of lung nodules, recently announced FDA clearance of RevealAI ...

Time February 04, 2026
arrow
News | FDA

Jan. 29, 2026 — GE HealthCare has received 510(k) clearance from the U.S. Food and Drug Administration (FDA) for MIM ...

Time February 03, 2026
arrow
News | Radiology Imaging

Jan.26, 2026 — SimonMed Imaging has unveiled an updated brand and the launch of SimonMed Longevity, a new division ...

Time January 27, 2026
arrow
News | Point-of-Care Ultrasound (POCUS)

Jan. 22, 2026 — Qure.ai has received a grant from the Gates Foundation to develop a large open-source multi-modal ...

Time January 23, 2026
arrow
News | Radiology Imaging

Jan. 21, 2026 — Cathpax, a spin-off of the Lemer Pax group that designs, develops and commercializes team-wide, full ...

Time January 22, 2026
arrow
News | Magnetic Resonance Imaging (MRI)

Jan. 20, 2026 — Hyperfine, the developer of the first FDA-cleared AI-powered portable MRI system for the brain — the ...

Time January 20, 2026
arrow
News | Mammography

Jan. 16, 2026 — Vega Imaging Informatics has announced the successful curation of the world’s largest digital breast ...

Time January 19, 2026
arrow
News | Radiation Therapy

Jan. 16, 2026 — Elekta has announced that its Elekta Evo* CT-Linac has received 510(k) clearance from the U.S. Food and ...

Time January 16, 2026
arrow
Subscribe Now