News | Artificial Intelligence | October 10, 2017

NIH Clinical Center Releases 100,000-Plus Chest X-ray Datasets to Scientific Community

Compiled from scans of more than 30,000 patients, datasets are intended to help train artificial intelligence algorithms to aid radiologists in diagnosis

NIH Clinical Center Releases 100,000-Plus Chest X-ray Datasets to Scientific Community

October 10, 2017 — The National Institutes of Health (NIH) Clinical Center recently released over 100,000 anonymized chest X-ray images and their corresponding data to the scientific community. The release will allow researchers across the country and around the world to freely access the datasets and increase their ability to teach computers how to detect and diagnose disease. Ultimately, this artificial intelligence mechanism can lead to clinicians making better diagnostic decisions for patients. 

NIH compiled the dataset of scans from more than 30,000 patients, including many with advanced lung disease. Patients at the NIH Clinical Center, the nation’s largest hospital devoted entirely to clinical research, are partners in research and voluntarily enroll to participate in clinical trials. With patient privacy being paramount, the dataset was rigorously screened to remove all personally identifiable information before release.

Reading and diagnosing chest X-ray images may be a relatively simple task for radiologists but, in fact, it is a complex reasoning problem that often requires careful observation and knowledge of anatomical principles, physiology and pathology. Such factors increase the difficulty of developing a consistent and automated technique for reading chest X-ray images while simultaneously considering all common thoracic diseases.

By using this free dataset, the hope is that academic and research institutions across the country will be able to teach a computer to read and process extremely large amounts of scans, to confirm the results radiologists have found and potentially identify other findings that may have been overlooked.

In addition, this advanced computer technology may also be able to:

  • Help identify slow changes occurring over the course of multiple chest X-rays that might otherwise be overlooked;
  • Benefit patients in developing countries that do not have access to radiologists to read their chest X-rays; and 
  • Create a virtual radiology resident that can later be taught to read more complex images like computed tomography (CT) and magnetic resonance imaging (MRI) in the future.

The NIH research hospital anticipates adding a large dataset of CT scans to be made available as well in the coming months.

For more information: www.clinicalcenter.nih.gov

 

Related Content on Artificial Intelligence in Radiology

Artificial Intelligence Could Learn From the Medical Imaging Goldmine of the NHS Archives

VIDEO: Machine Learning and the Future of Radiology

How Artificial Intelligence Will Change Medical Imaging

Must Radiologists Be Prepared To Delegate ... To Smart Machines?

Related Content

Bay Labs and Northwestern Medicine Enroll First Patient in AI Echocardiography Study
News | Cardiovascular Ultrasound | November 19, 2018
Medical artificial intelligence (AI) company Bay Labs and Northwestern Medicine announced that the first patient has...
QView Medical Showcases QVCAD for ABUS Exams at RSNA 2018
News | Ultrasound Women's Health | November 19, 2018
QView Medical will showcase QVCAD, the first U.S. Food and Drug Administration (FDA)-approved artificial intelligence (...
Lunit Unveiling AI-Based Mammography Solution at RSNA 2018
News | Mammography | November 15, 2018
Medical artificial intelligence (AI) software company Lunit will be returning to the 104th Radiological Society of...
Life Image and Mendel.ai Bringing Artificial Intelligence to Clinical Trial Development
News | Artificial Intelligence | November 15, 2018
Life Image and Mendel.ai announced a new strategic partnership that will facilitate the adoption and enhancement of...
Artificial Intelligence Predicts Alzheimer's Years Before Diagnosis
News | Neuro Imaging | November 14, 2018
Artificial intelligence (AI) technology improves the ability of brain imaging to predict Alzheimer’s disease, according...
Researchers Awarded 2018 Canon Medical Systems USA/RSNA Research Grants
News | Radiology Imaging | November 13, 2018
The Radiological Society of North America (RSNA) Research & Education (R&E) Foundation recently announced the...
Subtle Medical Showcases Artificial Intelligence for PET, MRI Scans at RSNA 2018
News | Artificial Intelligence | November 13, 2018
At the 2018 Radiological Society of North America annual meeting (RSNA 2018), Nov. 25-30 in Chicago, Subtle Medical...
Sponsored Content | Videos | Digital Radiography (DR) | November 12, 2018
VIVIX-S 1417N is a multi-purpose portable flat panel detector for addressing busy workflow in medical facilities.
ContextVision Introduces AI-Powered Image Enhancement for Digital Radiography
Technology | Artificial Intelligence | November 09, 2018
With the integration of deep learning technology, ContextVision takes digital radiography to new levels with its latest...
Figure 1

Figure 1

Feature | Information Technology | November 09, 2018 | By Jef Williams and Laurie Lafleur
Every year in late November tens of thousands of diagnostic imaging professionals from all over the globe descend upon...